Step |
Hyp |
Ref |
Expression |
1 |
|
opeq1 |
|- ( x = A -> <. x , CC >. = <. A , CC >. ) |
2 |
|
df-bj-inftyexpi |
|- inftyexpi = ( x e. ( -u _pi (,] _pi ) |-> <. x , CC >. ) |
3 |
|
opex |
|- <. A , CC >. e. _V |
4 |
1 2 3
|
fvmpt |
|- ( A e. ( -u _pi (,] _pi ) -> ( inftyexpi ` A ) = <. A , CC >. ) |
5 |
|
opex |
|- <. x , CC >. e. _V |
6 |
5 2
|
dmmpti |
|- dom inftyexpi = ( -u _pi (,] _pi ) |
7 |
4 6
|
eleq2s |
|- ( A e. dom inftyexpi -> ( inftyexpi ` A ) = <. A , CC >. ) |
8 |
|
cnex |
|- CC e. _V |
9 |
8
|
prid2 |
|- CC e. { A , CC } |
10 |
|
eqid |
|- { A , CC } = { A , CC } |
11 |
10
|
olci |
|- ( { A , CC } = { A } \/ { A , CC } = { A , CC } ) |
12 |
|
elopg |
|- ( ( A e. _V /\ CC e. _V ) -> ( { A , CC } e. <. A , CC >. <-> ( { A , CC } = { A } \/ { A , CC } = { A , CC } ) ) ) |
13 |
8 12
|
mpan2 |
|- ( A e. _V -> ( { A , CC } e. <. A , CC >. <-> ( { A , CC } = { A } \/ { A , CC } = { A , CC } ) ) ) |
14 |
11 13
|
mpbiri |
|- ( A e. _V -> { A , CC } e. <. A , CC >. ) |
15 |
|
en3lp |
|- -. ( CC e. { A , CC } /\ { A , CC } e. <. A , CC >. /\ <. A , CC >. e. CC ) |
16 |
15
|
bj-imn3ani |
|- ( ( CC e. { A , CC } /\ { A , CC } e. <. A , CC >. ) -> -. <. A , CC >. e. CC ) |
17 |
9 14 16
|
sylancr |
|- ( A e. _V -> -. <. A , CC >. e. CC ) |
18 |
|
opprc1 |
|- ( -. A e. _V -> <. A , CC >. = (/) ) |
19 |
|
0ncn |
|- -. (/) e. CC |
20 |
|
eleq1 |
|- ( <. A , CC >. = (/) -> ( <. A , CC >. e. CC <-> (/) e. CC ) ) |
21 |
19 20
|
mtbiri |
|- ( <. A , CC >. = (/) -> -. <. A , CC >. e. CC ) |
22 |
18 21
|
syl |
|- ( -. A e. _V -> -. <. A , CC >. e. CC ) |
23 |
17 22
|
pm2.61i |
|- -. <. A , CC >. e. CC |
24 |
|
eqcom |
|- ( ( inftyexpi ` A ) = <. A , CC >. <-> <. A , CC >. = ( inftyexpi ` A ) ) |
25 |
24
|
biimpi |
|- ( ( inftyexpi ` A ) = <. A , CC >. -> <. A , CC >. = ( inftyexpi ` A ) ) |
26 |
25
|
eleq1d |
|- ( ( inftyexpi ` A ) = <. A , CC >. -> ( <. A , CC >. e. CC <-> ( inftyexpi ` A ) e. CC ) ) |
27 |
23 26
|
mtbii |
|- ( ( inftyexpi ` A ) = <. A , CC >. -> -. ( inftyexpi ` A ) e. CC ) |
28 |
7 27
|
syl |
|- ( A e. dom inftyexpi -> -. ( inftyexpi ` A ) e. CC ) |
29 |
|
ndmfv |
|- ( -. A e. dom inftyexpi -> ( inftyexpi ` A ) = (/) ) |
30 |
29
|
eleq1d |
|- ( -. A e. dom inftyexpi -> ( ( inftyexpi ` A ) e. CC <-> (/) e. CC ) ) |
31 |
19 30
|
mtbiri |
|- ( -. A e. dom inftyexpi -> -. ( inftyexpi ` A ) e. CC ) |
32 |
28 31
|
pm2.61i |
|- -. ( inftyexpi ` A ) e. CC |