Metamath Proof Explorer


Theorem bj-inftyexpidisj

Description: An element of the circle at infinity is not a complex number. (Contributed by BJ, 22-Jun-2019) This utility theorem is irrelevant and should generally not be used. (New usage is discouraged.)

Ref Expression
Assertion bj-inftyexpidisj
|- -. ( inftyexpi ` A ) e. CC

Proof

Step Hyp Ref Expression
1 opeq1
 |-  ( x = A -> <. x , CC >. = <. A , CC >. )
2 df-bj-inftyexpi
 |-  inftyexpi = ( x e. ( -u _pi (,] _pi ) |-> <. x , CC >. )
3 opex
 |-  <. A , CC >. e. _V
4 1 2 3 fvmpt
 |-  ( A e. ( -u _pi (,] _pi ) -> ( inftyexpi ` A ) = <. A , CC >. )
5 opex
 |-  <. x , CC >. e. _V
6 5 2 dmmpti
 |-  dom inftyexpi = ( -u _pi (,] _pi )
7 4 6 eleq2s
 |-  ( A e. dom inftyexpi -> ( inftyexpi ` A ) = <. A , CC >. )
8 cnex
 |-  CC e. _V
9 8 prid2
 |-  CC e. { A , CC }
10 eqid
 |-  { A , CC } = { A , CC }
11 10 olci
 |-  ( { A , CC } = { A } \/ { A , CC } = { A , CC } )
12 elopg
 |-  ( ( A e. _V /\ CC e. _V ) -> ( { A , CC } e. <. A , CC >. <-> ( { A , CC } = { A } \/ { A , CC } = { A , CC } ) ) )
13 8 12 mpan2
 |-  ( A e. _V -> ( { A , CC } e. <. A , CC >. <-> ( { A , CC } = { A } \/ { A , CC } = { A , CC } ) ) )
14 11 13 mpbiri
 |-  ( A e. _V -> { A , CC } e. <. A , CC >. )
15 en3lp
 |-  -. ( CC e. { A , CC } /\ { A , CC } e. <. A , CC >. /\ <. A , CC >. e. CC )
16 15 bj-imn3ani
 |-  ( ( CC e. { A , CC } /\ { A , CC } e. <. A , CC >. ) -> -. <. A , CC >. e. CC )
17 9 14 16 sylancr
 |-  ( A e. _V -> -. <. A , CC >. e. CC )
18 opprc1
 |-  ( -. A e. _V -> <. A , CC >. = (/) )
19 0ncn
 |-  -. (/) e. CC
20 eleq1
 |-  ( <. A , CC >. = (/) -> ( <. A , CC >. e. CC <-> (/) e. CC ) )
21 19 20 mtbiri
 |-  ( <. A , CC >. = (/) -> -. <. A , CC >. e. CC )
22 18 21 syl
 |-  ( -. A e. _V -> -. <. A , CC >. e. CC )
23 17 22 pm2.61i
 |-  -. <. A , CC >. e. CC
24 eqcom
 |-  ( ( inftyexpi ` A ) = <. A , CC >. <-> <. A , CC >. = ( inftyexpi ` A ) )
25 24 biimpi
 |-  ( ( inftyexpi ` A ) = <. A , CC >. -> <. A , CC >. = ( inftyexpi ` A ) )
26 25 eleq1d
 |-  ( ( inftyexpi ` A ) = <. A , CC >. -> ( <. A , CC >. e. CC <-> ( inftyexpi ` A ) e. CC ) )
27 23 26 mtbii
 |-  ( ( inftyexpi ` A ) = <. A , CC >. -> -. ( inftyexpi ` A ) e. CC )
28 7 27 syl
 |-  ( A e. dom inftyexpi -> -. ( inftyexpi ` A ) e. CC )
29 ndmfv
 |-  ( -. A e. dom inftyexpi -> ( inftyexpi ` A ) = (/) )
30 29 eleq1d
 |-  ( -. A e. dom inftyexpi -> ( ( inftyexpi ` A ) e. CC <-> (/) e. CC ) )
31 19 30 mtbiri
 |-  ( -. A e. dom inftyexpi -> -. ( inftyexpi ` A ) e. CC )
32 28 31 pm2.61i
 |-  -. ( inftyexpi ` A ) e. CC