Metamath Proof Explorer


Theorem bj-modal4e

Description: First-order logic form of the modal axiom (4) using existential quantifiers. Dual statement of bj-modal4 ( hba1 ). (Contributed by BJ, 21-Dec-2020) (Proof modification is discouraged.)

Ref Expression
Assertion bj-modal4e
|- ( E. x E. x ph -> E. x ph )

Proof

Step Hyp Ref Expression
1 bj-modal4
 |-  ( A. x -. ph -> A. x A. x -. ph )
2 alnex
 |-  ( A. x -. ph <-> -. E. x ph )
3 2exnaln
 |-  ( E. x E. x ph <-> -. A. x A. x -. ph )
4 3 con2bii
 |-  ( A. x A. x -. ph <-> -. E. x E. x ph )
5 1 2 4 3imtr3i
 |-  ( -. E. x ph -> -. E. x E. x ph )
6 5 con4i
 |-  ( E. x E. x ph -> E. x ph )