Metamath Proof Explorer


Theorem bj-modal4e

Description: First-order logic form of the modal axiom (4) using existential quantifiers. Dual statement of bj-modal4 ( hba1 ). (Contributed by BJ, 21-Dec-2020) (Proof modification is discouraged.)

Ref Expression
Assertion bj-modal4e ( ∃ 𝑥𝑥 𝜑 → ∃ 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 bj-modal4 ( ∀ 𝑥 ¬ 𝜑 → ∀ 𝑥𝑥 ¬ 𝜑 )
2 alnex ( ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∃ 𝑥 𝜑 )
3 2exnaln ( ∃ 𝑥𝑥 𝜑 ↔ ¬ ∀ 𝑥𝑥 ¬ 𝜑 )
4 3 con2bii ( ∀ 𝑥𝑥 ¬ 𝜑 ↔ ¬ ∃ 𝑥𝑥 𝜑 )
5 1 2 4 3imtr3i ( ¬ ∃ 𝑥 𝜑 → ¬ ∃ 𝑥𝑥 𝜑 )
6 5 con4i ( ∃ 𝑥𝑥 𝜑 → ∃ 𝑥 𝜑 )