Metamath Proof Explorer


Theorem bj-notalbii

Description: Equivalence of universal quantification of negation of equivalent formulas. Shortens ab0 (103>94), ballotlem2 (2655>2648), bnj1143 (522>519), hausdiag (2119>2104). (Contributed by BJ, 17-Jul-2021)

Ref Expression
Hypothesis bj-notalbii.1
|- ( ph <-> ps )
Assertion bj-notalbii
|- ( A. x -. ph <-> A. x -. ps )

Proof

Step Hyp Ref Expression
1 bj-notalbii.1
 |-  ( ph <-> ps )
2 1 notbii
 |-  ( -. ph <-> -. ps )
3 2 albii
 |-  ( A. x -. ph <-> A. x -. ps )