Metamath Proof Explorer
Description: Equivalence of universal quantification of negation of equivalent
formulas. Shortens ab0 (103>94), ballotlem2 (2655>2648), bnj1143 (522>519), hausdiag (2119>2104). (Contributed by BJ, 17-Jul-2021)
|
|
Ref |
Expression |
|
Hypothesis |
bj-notalbii.1 |
|- ( ph <-> ps ) |
|
Assertion |
bj-notalbii |
|- ( A. x -. ph <-> A. x -. ps ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
bj-notalbii.1 |
|- ( ph <-> ps ) |
2 |
1
|
notbii |
|- ( -. ph <-> -. ps ) |
3 |
2
|
albii |
|- ( A. x -. ph <-> A. x -. ps ) |