Metamath Proof Explorer
Description: Equivalence of universal quantification of negation of equivalent
formulas. Shortens ab0 (103>94), ballotlem2 (2655>2648), bnj1143 (522>519), hausdiag (2119>2104). (Contributed by BJ, 17-Jul-2021)
|
|
Ref |
Expression |
|
Hypothesis |
bj-notalbii.1 |
⊢ ( 𝜑 ↔ 𝜓 ) |
|
Assertion |
bj-notalbii |
⊢ ( ∀ 𝑥 ¬ 𝜑 ↔ ∀ 𝑥 ¬ 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
bj-notalbii.1 |
⊢ ( 𝜑 ↔ 𝜓 ) |
2 |
1
|
notbii |
⊢ ( ¬ 𝜑 ↔ ¬ 𝜓 ) |
3 |
2
|
albii |
⊢ ( ∀ 𝑥 ¬ 𝜑 ↔ ∀ 𝑥 ¬ 𝜓 ) |