Metamath Proof Explorer


Theorem bj-notalbii

Description: Equivalence of universal quantification of negation of equivalent formulas. Shortens ab0 (103>94), ballotlem2 (2655>2648), bnj1143 (522>519), hausdiag (2119>2104). (Contributed by BJ, 17-Jul-2021)

Ref Expression
Hypothesis bj-notalbii.1 ( 𝜑𝜓 )
Assertion bj-notalbii ( ∀ 𝑥 ¬ 𝜑 ↔ ∀ 𝑥 ¬ 𝜓 )

Proof

Step Hyp Ref Expression
1 bj-notalbii.1 ( 𝜑𝜓 )
2 1 notbii ( ¬ 𝜑 ↔ ¬ 𝜓 )
3 2 albii ( ∀ 𝑥 ¬ 𝜑 ↔ ∀ 𝑥 ¬ 𝜓 )