Step |
Hyp |
Ref |
Expression |
1 |
|
df-iun |
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } |
2 |
|
notnotb |
⊢ ( 𝐴 = ∅ ↔ ¬ ¬ 𝐴 = ∅ ) |
3 |
|
neq0 |
⊢ ( ¬ 𝐴 = ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
4 |
2 3
|
xchbinx |
⊢ ( 𝐴 = ∅ ↔ ¬ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
5 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) |
6 |
|
exsimpl |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → ∃ 𝑥 𝑥 ∈ 𝐴 ) |
7 |
5 6
|
sylbi |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 → ∃ 𝑥 𝑥 ∈ 𝐴 ) |
8 |
7
|
con3i |
⊢ ( ¬ ∃ 𝑥 𝑥 ∈ 𝐴 → ¬ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ) |
9 |
4 8
|
sylbi |
⊢ ( 𝐴 = ∅ → ¬ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ) |
10 |
9
|
alrimiv |
⊢ ( 𝐴 = ∅ → ∀ 𝑧 ¬ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ) |
11 |
|
notnotb |
⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } = ∅ ↔ ¬ ¬ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } = ∅ ) |
12 |
|
neq0 |
⊢ ( ¬ ∪ 𝑥 ∈ 𝐴 𝐵 = ∅ ↔ ∃ 𝑧 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
13 |
1
|
eqeq1i |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 = ∅ ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } = ∅ ) |
14 |
13
|
notbii |
⊢ ( ¬ ∪ 𝑥 ∈ 𝐴 𝐵 = ∅ ↔ ¬ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } = ∅ ) |
15 |
|
df-iun |
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 } |
16 |
15
|
eleq2i |
⊢ ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑧 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 } ) |
17 |
16
|
exbii |
⊢ ( ∃ 𝑧 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑧 𝑧 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 } ) |
18 |
12 14 17
|
3bitr3i |
⊢ ( ¬ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } = ∅ ↔ ∃ 𝑧 𝑧 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 } ) |
19 |
11 18
|
xchbinx |
⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } = ∅ ↔ ¬ ∃ 𝑧 𝑧 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 } ) |
20 |
|
alnex |
⊢ ( ∀ 𝑧 ¬ 𝑧 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 } ↔ ¬ ∃ 𝑧 𝑧 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 } ) |
21 |
|
abid |
⊢ ( 𝑧 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 } ↔ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ) |
22 |
21
|
notbii |
⊢ ( ¬ 𝑧 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 } ↔ ¬ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ) |
23 |
22
|
albii |
⊢ ( ∀ 𝑧 ¬ 𝑧 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 } ↔ ∀ 𝑧 ¬ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ) |
24 |
19 20 23
|
3bitr2i |
⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } = ∅ ↔ ∀ 𝑧 ¬ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ) |
25 |
10 24
|
sylibr |
⊢ ( 𝐴 = ∅ → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } = ∅ ) |
26 |
1 25
|
syl5eq |
⊢ ( 𝐴 = ∅ → ∪ 𝑥 ∈ 𝐴 𝐵 = ∅ ) |
27 |
|
0ss |
⊢ ∅ ⊆ 𝐵 |
28 |
26 27
|
eqsstrdi |
⊢ ( 𝐴 = ∅ → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵 ) |
29 |
|
iunconst |
⊢ ( 𝐴 ≠ ∅ → ∪ 𝑥 ∈ 𝐴 𝐵 = 𝐵 ) |
30 |
|
eqimss |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵 ) |
31 |
29 30
|
syl |
⊢ ( 𝐴 ≠ ∅ → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵 ) |
32 |
28 31
|
pm2.61ine |
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵 |