Metamath Proof Explorer


Theorem bnj1143

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj1143 𝑥𝐴 𝐵𝐵

Proof

Step Hyp Ref Expression
1 df-iun 𝑥𝐴 𝐵 = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐵 }
2 notnotb ( 𝐴 = ∅ ↔ ¬ ¬ 𝐴 = ∅ )
3 neq0 ( ¬ 𝐴 = ∅ ↔ ∃ 𝑥 𝑥𝐴 )
4 2 3 xchbinx ( 𝐴 = ∅ ↔ ¬ ∃ 𝑥 𝑥𝐴 )
5 df-rex ( ∃ 𝑥𝐴 𝑧𝐵 ↔ ∃ 𝑥 ( 𝑥𝐴𝑧𝐵 ) )
6 exsimpl ( ∃ 𝑥 ( 𝑥𝐴𝑧𝐵 ) → ∃ 𝑥 𝑥𝐴 )
7 5 6 sylbi ( ∃ 𝑥𝐴 𝑧𝐵 → ∃ 𝑥 𝑥𝐴 )
8 7 con3i ( ¬ ∃ 𝑥 𝑥𝐴 → ¬ ∃ 𝑥𝐴 𝑧𝐵 )
9 4 8 sylbi ( 𝐴 = ∅ → ¬ ∃ 𝑥𝐴 𝑧𝐵 )
10 9 alrimiv ( 𝐴 = ∅ → ∀ 𝑧 ¬ ∃ 𝑥𝐴 𝑧𝐵 )
11 notnotb ( { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐵 } = ∅ ↔ ¬ ¬ { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐵 } = ∅ )
12 neq0 ( ¬ 𝑥𝐴 𝐵 = ∅ ↔ ∃ 𝑧 𝑧 𝑥𝐴 𝐵 )
13 1 eqeq1i ( 𝑥𝐴 𝐵 = ∅ ↔ { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐵 } = ∅ )
14 13 notbii ( ¬ 𝑥𝐴 𝐵 = ∅ ↔ ¬ { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐵 } = ∅ )
15 df-iun 𝑥𝐴 𝐵 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧𝐵 }
16 15 eleq2i ( 𝑧 𝑥𝐴 𝐵𝑧 ∈ { 𝑧 ∣ ∃ 𝑥𝐴 𝑧𝐵 } )
17 16 exbii ( ∃ 𝑧 𝑧 𝑥𝐴 𝐵 ↔ ∃ 𝑧 𝑧 ∈ { 𝑧 ∣ ∃ 𝑥𝐴 𝑧𝐵 } )
18 12 14 17 3bitr3i ( ¬ { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐵 } = ∅ ↔ ∃ 𝑧 𝑧 ∈ { 𝑧 ∣ ∃ 𝑥𝐴 𝑧𝐵 } )
19 11 18 xchbinx ( { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐵 } = ∅ ↔ ¬ ∃ 𝑧 𝑧 ∈ { 𝑧 ∣ ∃ 𝑥𝐴 𝑧𝐵 } )
20 alnex ( ∀ 𝑧 ¬ 𝑧 ∈ { 𝑧 ∣ ∃ 𝑥𝐴 𝑧𝐵 } ↔ ¬ ∃ 𝑧 𝑧 ∈ { 𝑧 ∣ ∃ 𝑥𝐴 𝑧𝐵 } )
21 abid ( 𝑧 ∈ { 𝑧 ∣ ∃ 𝑥𝐴 𝑧𝐵 } ↔ ∃ 𝑥𝐴 𝑧𝐵 )
22 21 notbii ( ¬ 𝑧 ∈ { 𝑧 ∣ ∃ 𝑥𝐴 𝑧𝐵 } ↔ ¬ ∃ 𝑥𝐴 𝑧𝐵 )
23 22 albii ( ∀ 𝑧 ¬ 𝑧 ∈ { 𝑧 ∣ ∃ 𝑥𝐴 𝑧𝐵 } ↔ ∀ 𝑧 ¬ ∃ 𝑥𝐴 𝑧𝐵 )
24 19 20 23 3bitr2i ( { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐵 } = ∅ ↔ ∀ 𝑧 ¬ ∃ 𝑥𝐴 𝑧𝐵 )
25 10 24 sylibr ( 𝐴 = ∅ → { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐵 } = ∅ )
26 1 25 syl5eq ( 𝐴 = ∅ → 𝑥𝐴 𝐵 = ∅ )
27 0ss ∅ ⊆ 𝐵
28 26 27 eqsstrdi ( 𝐴 = ∅ → 𝑥𝐴 𝐵𝐵 )
29 iunconst ( 𝐴 ≠ ∅ → 𝑥𝐴 𝐵 = 𝐵 )
30 eqimss ( 𝑥𝐴 𝐵 = 𝐵 𝑥𝐴 𝐵𝐵 )
31 29 30 syl ( 𝐴 ≠ ∅ → 𝑥𝐴 𝐵𝐵 )
32 28 31 pm2.61ine 𝑥𝐴 𝐵𝐵