Metamath Proof Explorer


Theorem bj-notalbii

Description: Equivalence of universal quantification of negation of equivalent formulas. Shortens ab0 (103>94), ballotlem2 (2655>2648), bnj1143 (522>519), hausdiag (2119>2104). (Contributed by BJ, 17-Jul-2021)

Ref Expression
Hypothesis bj-notalbii.1 φ ψ
Assertion bj-notalbii x ¬ φ x ¬ ψ

Proof

Step Hyp Ref Expression
1 bj-notalbii.1 φ ψ
2 1 notbii ¬ φ ¬ ψ
3 2 albii x ¬ φ x ¬ ψ