Metamath Proof Explorer


Theorem bj-opelidb1ALT

Description: Characterization of the couples in _I . (Contributed by BJ, 29-Mar-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-opelidb1ALT
|- ( <. A , B >. e. _I <-> ( A e. _V /\ A = B ) )

Proof

Step Hyp Ref Expression
1 df-br
 |-  ( A _I B <-> <. A , B >. e. _I )
2 reli
 |-  Rel _I
3 2 brrelex1i
 |-  ( A _I B -> A e. _V )
4 1 3 sylbir
 |-  ( <. A , B >. e. _I -> A e. _V )
5 inex1g
 |-  ( A e. _V -> ( A i^i B ) e. _V )
6 bj-opelid
 |-  ( ( A i^i B ) e. _V -> ( <. A , B >. e. _I <-> A = B ) )
7 5 6 syl
 |-  ( A e. _V -> ( <. A , B >. e. _I <-> A = B ) )
8 4 7 biadanii
 |-  ( <. A , B >. e. _I <-> ( A e. _V /\ A = B ) )