Description: Characterization of the couples in _I . (Contributed by BJ, 29-Mar-2020) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-opelidb1ALT | |- ( <. A , B >. e. _I <-> ( A e. _V /\ A = B ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-br | |- ( A _I B <-> <. A , B >. e. _I ) | |
| 2 | reli | |- Rel _I | |
| 3 | 2 | brrelex1i | |- ( A _I B -> A e. _V ) | 
| 4 | 1 3 | sylbir | |- ( <. A , B >. e. _I -> A e. _V ) | 
| 5 | inex1g | |- ( A e. _V -> ( A i^i B ) e. _V ) | |
| 6 | bj-opelid | |- ( ( A i^i B ) e. _V -> ( <. A , B >. e. _I <-> A = B ) ) | |
| 7 | 5 6 | syl | |- ( A e. _V -> ( <. A , B >. e. _I <-> A = B ) ) | 
| 8 | 4 7 | biadanii | |- ( <. A , B >. e. _I <-> ( A e. _V /\ A = B ) ) |