Description: Characterization of the couples in _I . (Contributed by BJ, 29-Mar-2020) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-opelidb1ALT | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ I ↔ ( 𝐴 ∈ V ∧ 𝐴 = 𝐵 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-br | ⊢ ( 𝐴 I 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ I ) | |
| 2 | reli | ⊢ Rel I | |
| 3 | 2 | brrelex1i | ⊢ ( 𝐴 I 𝐵 → 𝐴 ∈ V ) | 
| 4 | 1 3 | sylbir | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ I → 𝐴 ∈ V ) | 
| 5 | inex1g | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∩ 𝐵 ) ∈ V ) | |
| 6 | bj-opelid | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ V → ( 〈 𝐴 , 𝐵 〉 ∈ I ↔ 𝐴 = 𝐵 ) ) | |
| 7 | 5 6 | syl | ⊢ ( 𝐴 ∈ V → ( 〈 𝐴 , 𝐵 〉 ∈ I ↔ 𝐴 = 𝐵 ) ) | 
| 8 | 4 7 | biadanii | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ I ↔ ( 𝐴 ∈ V ∧ 𝐴 = 𝐵 ) ) |