Metamath Proof Explorer


Theorem bj-opelidb1ALT

Description: Characterization of the couples in _I . (Contributed by BJ, 29-Mar-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-opelidb1ALT ( ⟨ 𝐴 , 𝐵 ⟩ ∈ I ↔ ( 𝐴 ∈ V ∧ 𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 df-br ( 𝐴 I 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ I )
2 reli Rel I
3 2 brrelex1i ( 𝐴 I 𝐵𝐴 ∈ V )
4 1 3 sylbir ( ⟨ 𝐴 , 𝐵 ⟩ ∈ I → 𝐴 ∈ V )
5 inex1g ( 𝐴 ∈ V → ( 𝐴𝐵 ) ∈ V )
6 bj-opelid ( ( 𝐴𝐵 ) ∈ V → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ I ↔ 𝐴 = 𝐵 ) )
7 5 6 syl ( 𝐴 ∈ V → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ I ↔ 𝐴 = 𝐵 ) )
8 4 7 biadanii ( ⟨ 𝐴 , 𝐵 ⟩ ∈ I ↔ ( 𝐴 ∈ V ∧ 𝐴 = 𝐵 ) )