Step |
Hyp |
Ref |
Expression |
1 |
|
eldifi |
|- ( X e. ( V \ { (/) } ) -> X e. V ) |
2 |
|
eldifsni |
|- ( X e. ( V \ { (/) } ) -> X =/= (/) ) |
3 |
1 2
|
jca |
|- ( X e. ( V \ { (/) } ) -> ( X e. V /\ X =/= (/) ) ) |
4 |
3
|
anim1i |
|- ( ( X e. ( V \ { (/) } ) /\ A e. W ) -> ( ( X e. V /\ X =/= (/) ) /\ A e. W ) ) |
5 |
|
an32 |
|- ( ( ( X e. V /\ X =/= (/) ) /\ A e. W ) <-> ( ( X e. V /\ A e. W ) /\ X =/= (/) ) ) |
6 |
4 5
|
sylib |
|- ( ( X e. ( V \ { (/) } ) /\ A e. W ) -> ( ( X e. V /\ A e. W ) /\ X =/= (/) ) ) |
7 |
|
bj-restn0 |
|- ( ( X e. V /\ A e. W ) -> ( X =/= (/) -> ( X |`t A ) =/= (/) ) ) |
8 |
7
|
imp |
|- ( ( ( X e. V /\ A e. W ) /\ X =/= (/) ) -> ( X |`t A ) =/= (/) ) |
9 |
6 8
|
syl |
|- ( ( X e. ( V \ { (/) } ) /\ A e. W ) -> ( X |`t A ) =/= (/) ) |