| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifi |  |-  ( X e. ( V \ { (/) } ) -> X e. V ) | 
						
							| 2 |  | eldifsni |  |-  ( X e. ( V \ { (/) } ) -> X =/= (/) ) | 
						
							| 3 | 1 2 | jca |  |-  ( X e. ( V \ { (/) } ) -> ( X e. V /\ X =/= (/) ) ) | 
						
							| 4 | 3 | anim1i |  |-  ( ( X e. ( V \ { (/) } ) /\ A e. W ) -> ( ( X e. V /\ X =/= (/) ) /\ A e. W ) ) | 
						
							| 5 |  | an32 |  |-  ( ( ( X e. V /\ X =/= (/) ) /\ A e. W ) <-> ( ( X e. V /\ A e. W ) /\ X =/= (/) ) ) | 
						
							| 6 | 4 5 | sylib |  |-  ( ( X e. ( V \ { (/) } ) /\ A e. W ) -> ( ( X e. V /\ A e. W ) /\ X =/= (/) ) ) | 
						
							| 7 |  | bj-restn0 |  |-  ( ( X e. V /\ A e. W ) -> ( X =/= (/) -> ( X |`t A ) =/= (/) ) ) | 
						
							| 8 | 7 | imp |  |-  ( ( ( X e. V /\ A e. W ) /\ X =/= (/) ) -> ( X |`t A ) =/= (/) ) | 
						
							| 9 | 6 8 | syl |  |-  ( ( X e. ( V \ { (/) } ) /\ A e. W ) -> ( X |`t A ) =/= (/) ) |