Metamath Proof Explorer


Theorem bj-restn0b

Description: Alternate version of bj-restn0 . (Contributed by BJ, 27-Apr-2021)

Ref Expression
Assertion bj-restn0b ( ( 𝑋 ∈ ( 𝑉 ∖ { ∅ } ) ∧ 𝐴𝑊 ) → ( 𝑋t 𝐴 ) ≠ ∅ )

Proof

Step Hyp Ref Expression
1 eldifi ( 𝑋 ∈ ( 𝑉 ∖ { ∅ } ) → 𝑋𝑉 )
2 eldifsni ( 𝑋 ∈ ( 𝑉 ∖ { ∅ } ) → 𝑋 ≠ ∅ )
3 1 2 jca ( 𝑋 ∈ ( 𝑉 ∖ { ∅ } ) → ( 𝑋𝑉𝑋 ≠ ∅ ) )
4 3 anim1i ( ( 𝑋 ∈ ( 𝑉 ∖ { ∅ } ) ∧ 𝐴𝑊 ) → ( ( 𝑋𝑉𝑋 ≠ ∅ ) ∧ 𝐴𝑊 ) )
5 an32 ( ( ( 𝑋𝑉𝑋 ≠ ∅ ) ∧ 𝐴𝑊 ) ↔ ( ( 𝑋𝑉𝐴𝑊 ) ∧ 𝑋 ≠ ∅ ) )
6 4 5 sylib ( ( 𝑋 ∈ ( 𝑉 ∖ { ∅ } ) ∧ 𝐴𝑊 ) → ( ( 𝑋𝑉𝐴𝑊 ) ∧ 𝑋 ≠ ∅ ) )
7 bj-restn0 ( ( 𝑋𝑉𝐴𝑊 ) → ( 𝑋 ≠ ∅ → ( 𝑋t 𝐴 ) ≠ ∅ ) )
8 7 imp ( ( ( 𝑋𝑉𝐴𝑊 ) ∧ 𝑋 ≠ ∅ ) → ( 𝑋t 𝐴 ) ≠ ∅ )
9 6 8 syl ( ( 𝑋 ∈ ( 𝑉 ∖ { ∅ } ) ∧ 𝐴𝑊 ) → ( 𝑋t 𝐴 ) ≠ ∅ )