Metamath Proof Explorer


Theorem bj-restn0

Description: An elementwise intersection on a nonempty family is nonempty. (Contributed by BJ, 27-Apr-2021)

Ref Expression
Assertion bj-restn0 ( ( 𝑋𝑉𝐴𝑊 ) → ( 𝑋 ≠ ∅ → ( 𝑋t 𝐴 ) ≠ ∅ ) )

Proof

Step Hyp Ref Expression
1 n0 ( 𝑋 ≠ ∅ ↔ ∃ 𝑦 𝑦𝑋 )
2 vex 𝑦 ∈ V
3 2 inex1 ( 𝑦𝐴 ) ∈ V
4 3 isseti 𝑥 𝑥 = ( 𝑦𝐴 )
5 4 jctr ( 𝑦𝑋 → ( 𝑦𝑋 ∧ ∃ 𝑥 𝑥 = ( 𝑦𝐴 ) ) )
6 5 eximi ( ∃ 𝑦 𝑦𝑋 → ∃ 𝑦 ( 𝑦𝑋 ∧ ∃ 𝑥 𝑥 = ( 𝑦𝐴 ) ) )
7 df-rex ( ∃ 𝑦𝑋𝑥 𝑥 = ( 𝑦𝐴 ) ↔ ∃ 𝑦 ( 𝑦𝑋 ∧ ∃ 𝑥 𝑥 = ( 𝑦𝐴 ) ) )
8 6 7 sylibr ( ∃ 𝑦 𝑦𝑋 → ∃ 𝑦𝑋𝑥 𝑥 = ( 𝑦𝐴 ) )
9 rexcom4 ( ∃ 𝑦𝑋𝑥 𝑥 = ( 𝑦𝐴 ) ↔ ∃ 𝑥𝑦𝑋 𝑥 = ( 𝑦𝐴 ) )
10 8 9 sylib ( ∃ 𝑦 𝑦𝑋 → ∃ 𝑥𝑦𝑋 𝑥 = ( 𝑦𝐴 ) )
11 10 a1i ( ( 𝑋𝑉𝐴𝑊 ) → ( ∃ 𝑦 𝑦𝑋 → ∃ 𝑥𝑦𝑋 𝑥 = ( 𝑦𝐴 ) ) )
12 1 11 syl5bi ( ( 𝑋𝑉𝐴𝑊 ) → ( 𝑋 ≠ ∅ → ∃ 𝑥𝑦𝑋 𝑥 = ( 𝑦𝐴 ) ) )
13 elrest ( ( 𝑋𝑉𝐴𝑊 ) → ( 𝑥 ∈ ( 𝑋t 𝐴 ) ↔ ∃ 𝑦𝑋 𝑥 = ( 𝑦𝐴 ) ) )
14 13 biimprd ( ( 𝑋𝑉𝐴𝑊 ) → ( ∃ 𝑦𝑋 𝑥 = ( 𝑦𝐴 ) → 𝑥 ∈ ( 𝑋t 𝐴 ) ) )
15 14 eximdv ( ( 𝑋𝑉𝐴𝑊 ) → ( ∃ 𝑥𝑦𝑋 𝑥 = ( 𝑦𝐴 ) → ∃ 𝑥 𝑥 ∈ ( 𝑋t 𝐴 ) ) )
16 12 15 syld ( ( 𝑋𝑉𝐴𝑊 ) → ( 𝑋 ≠ ∅ → ∃ 𝑥 𝑥 ∈ ( 𝑋t 𝐴 ) ) )
17 n0 ( ( 𝑋t 𝐴 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝑋t 𝐴 ) )
18 16 17 syl6ibr ( ( 𝑋𝑉𝐴𝑊 ) → ( 𝑋 ≠ ∅ → ( 𝑋t 𝐴 ) ≠ ∅ ) )