| Step | Hyp | Ref | Expression | 
						
							| 1 |  | n0 | ⊢ ( 𝑋  ≠  ∅  ↔  ∃ 𝑦 𝑦  ∈  𝑋 ) | 
						
							| 2 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 3 | 2 | inex1 | ⊢ ( 𝑦  ∩  𝐴 )  ∈  V | 
						
							| 4 | 3 | isseti | ⊢ ∃ 𝑥 𝑥  =  ( 𝑦  ∩  𝐴 ) | 
						
							| 5 | 4 | jctr | ⊢ ( 𝑦  ∈  𝑋  →  ( 𝑦  ∈  𝑋  ∧  ∃ 𝑥 𝑥  =  ( 𝑦  ∩  𝐴 ) ) ) | 
						
							| 6 | 5 | eximi | ⊢ ( ∃ 𝑦 𝑦  ∈  𝑋  →  ∃ 𝑦 ( 𝑦  ∈  𝑋  ∧  ∃ 𝑥 𝑥  =  ( 𝑦  ∩  𝐴 ) ) ) | 
						
							| 7 |  | df-rex | ⊢ ( ∃ 𝑦  ∈  𝑋 ∃ 𝑥 𝑥  =  ( 𝑦  ∩  𝐴 )  ↔  ∃ 𝑦 ( 𝑦  ∈  𝑋  ∧  ∃ 𝑥 𝑥  =  ( 𝑦  ∩  𝐴 ) ) ) | 
						
							| 8 | 6 7 | sylibr | ⊢ ( ∃ 𝑦 𝑦  ∈  𝑋  →  ∃ 𝑦  ∈  𝑋 ∃ 𝑥 𝑥  =  ( 𝑦  ∩  𝐴 ) ) | 
						
							| 9 |  | rexcom4 | ⊢ ( ∃ 𝑦  ∈  𝑋 ∃ 𝑥 𝑥  =  ( 𝑦  ∩  𝐴 )  ↔  ∃ 𝑥 ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦  ∩  𝐴 ) ) | 
						
							| 10 | 8 9 | sylib | ⊢ ( ∃ 𝑦 𝑦  ∈  𝑋  →  ∃ 𝑥 ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦  ∩  𝐴 ) ) | 
						
							| 11 | 10 | a1i | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑊 )  →  ( ∃ 𝑦 𝑦  ∈  𝑋  →  ∃ 𝑥 ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦  ∩  𝐴 ) ) ) | 
						
							| 12 | 1 11 | biimtrid | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑊 )  →  ( 𝑋  ≠  ∅  →  ∃ 𝑥 ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦  ∩  𝐴 ) ) ) | 
						
							| 13 |  | elrest | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑊 )  →  ( 𝑥  ∈  ( 𝑋  ↾t  𝐴 )  ↔  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦  ∩  𝐴 ) ) ) | 
						
							| 14 | 13 | biimprd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑊 )  →  ( ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦  ∩  𝐴 )  →  𝑥  ∈  ( 𝑋  ↾t  𝐴 ) ) ) | 
						
							| 15 | 14 | eximdv | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑊 )  →  ( ∃ 𝑥 ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦  ∩  𝐴 )  →  ∃ 𝑥 𝑥  ∈  ( 𝑋  ↾t  𝐴 ) ) ) | 
						
							| 16 | 12 15 | syld | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑊 )  →  ( 𝑋  ≠  ∅  →  ∃ 𝑥 𝑥  ∈  ( 𝑋  ↾t  𝐴 ) ) ) | 
						
							| 17 |  | n0 | ⊢ ( ( 𝑋  ↾t  𝐴 )  ≠  ∅  ↔  ∃ 𝑥 𝑥  ∈  ( 𝑋  ↾t  𝐴 ) ) | 
						
							| 18 | 16 17 | imbitrrdi | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑊 )  →  ( 𝑋  ≠  ∅  →  ( 𝑋  ↾t  𝐴 )  ≠  ∅ ) ) |