| Step |
Hyp |
Ref |
Expression |
| 1 |
|
n0 |
⊢ ( 𝑋 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝑋 ) |
| 2 |
|
vex |
⊢ 𝑦 ∈ V |
| 3 |
2
|
inex1 |
⊢ ( 𝑦 ∩ 𝐴 ) ∈ V |
| 4 |
3
|
isseti |
⊢ ∃ 𝑥 𝑥 = ( 𝑦 ∩ 𝐴 ) |
| 5 |
4
|
jctr |
⊢ ( 𝑦 ∈ 𝑋 → ( 𝑦 ∈ 𝑋 ∧ ∃ 𝑥 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) |
| 6 |
5
|
eximi |
⊢ ( ∃ 𝑦 𝑦 ∈ 𝑋 → ∃ 𝑦 ( 𝑦 ∈ 𝑋 ∧ ∃ 𝑥 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) |
| 7 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝑋 ∃ 𝑥 𝑥 = ( 𝑦 ∩ 𝐴 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑋 ∧ ∃ 𝑥 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) |
| 8 |
6 7
|
sylibr |
⊢ ( ∃ 𝑦 𝑦 ∈ 𝑋 → ∃ 𝑦 ∈ 𝑋 ∃ 𝑥 𝑥 = ( 𝑦 ∩ 𝐴 ) ) |
| 9 |
|
rexcom4 |
⊢ ( ∃ 𝑦 ∈ 𝑋 ∃ 𝑥 𝑥 = ( 𝑦 ∩ 𝐴 ) ↔ ∃ 𝑥 ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 ∩ 𝐴 ) ) |
| 10 |
8 9
|
sylib |
⊢ ( ∃ 𝑦 𝑦 ∈ 𝑋 → ∃ 𝑥 ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 ∩ 𝐴 ) ) |
| 11 |
10
|
a1i |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( ∃ 𝑦 𝑦 ∈ 𝑋 → ∃ 𝑥 ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) |
| 12 |
1 11
|
biimtrid |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝑋 ≠ ∅ → ∃ 𝑥 ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) |
| 13 |
|
elrest |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝑥 ∈ ( 𝑋 ↾t 𝐴 ) ↔ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) |
| 14 |
13
|
biimprd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 ∩ 𝐴 ) → 𝑥 ∈ ( 𝑋 ↾t 𝐴 ) ) ) |
| 15 |
14
|
eximdv |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( ∃ 𝑥 ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 ∩ 𝐴 ) → ∃ 𝑥 𝑥 ∈ ( 𝑋 ↾t 𝐴 ) ) ) |
| 16 |
12 15
|
syld |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝑋 ≠ ∅ → ∃ 𝑥 𝑥 ∈ ( 𝑋 ↾t 𝐴 ) ) ) |
| 17 |
|
n0 |
⊢ ( ( 𝑋 ↾t 𝐴 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝑋 ↾t 𝐴 ) ) |
| 18 |
16 17
|
imbitrrdi |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝑋 ≠ ∅ → ( 𝑋 ↾t 𝐴 ) ≠ ∅ ) ) |