Step |
Hyp |
Ref |
Expression |
1 |
|
n0 |
⊢ ( 𝑋 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝑋 ) |
2 |
|
vex |
⊢ 𝑦 ∈ V |
3 |
2
|
inex1 |
⊢ ( 𝑦 ∩ 𝐴 ) ∈ V |
4 |
3
|
isseti |
⊢ ∃ 𝑥 𝑥 = ( 𝑦 ∩ 𝐴 ) |
5 |
4
|
jctr |
⊢ ( 𝑦 ∈ 𝑋 → ( 𝑦 ∈ 𝑋 ∧ ∃ 𝑥 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) |
6 |
5
|
eximi |
⊢ ( ∃ 𝑦 𝑦 ∈ 𝑋 → ∃ 𝑦 ( 𝑦 ∈ 𝑋 ∧ ∃ 𝑥 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) |
7 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝑋 ∃ 𝑥 𝑥 = ( 𝑦 ∩ 𝐴 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑋 ∧ ∃ 𝑥 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) |
8 |
6 7
|
sylibr |
⊢ ( ∃ 𝑦 𝑦 ∈ 𝑋 → ∃ 𝑦 ∈ 𝑋 ∃ 𝑥 𝑥 = ( 𝑦 ∩ 𝐴 ) ) |
9 |
|
rexcom4 |
⊢ ( ∃ 𝑦 ∈ 𝑋 ∃ 𝑥 𝑥 = ( 𝑦 ∩ 𝐴 ) ↔ ∃ 𝑥 ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 ∩ 𝐴 ) ) |
10 |
8 9
|
sylib |
⊢ ( ∃ 𝑦 𝑦 ∈ 𝑋 → ∃ 𝑥 ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 ∩ 𝐴 ) ) |
11 |
10
|
a1i |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( ∃ 𝑦 𝑦 ∈ 𝑋 → ∃ 𝑥 ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) |
12 |
1 11
|
syl5bi |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝑋 ≠ ∅ → ∃ 𝑥 ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) |
13 |
|
elrest |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝑥 ∈ ( 𝑋 ↾t 𝐴 ) ↔ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) |
14 |
13
|
biimprd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 ∩ 𝐴 ) → 𝑥 ∈ ( 𝑋 ↾t 𝐴 ) ) ) |
15 |
14
|
eximdv |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( ∃ 𝑥 ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 ∩ 𝐴 ) → ∃ 𝑥 𝑥 ∈ ( 𝑋 ↾t 𝐴 ) ) ) |
16 |
12 15
|
syld |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝑋 ≠ ∅ → ∃ 𝑥 𝑥 ∈ ( 𝑋 ↾t 𝐴 ) ) ) |
17 |
|
n0 |
⊢ ( ( 𝑋 ↾t 𝐴 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝑋 ↾t 𝐴 ) ) |
18 |
16 17
|
syl6ibr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝑋 ≠ ∅ → ( 𝑋 ↾t 𝐴 ) ≠ ∅ ) ) |