Metamath Proof Explorer


Theorem bj-restn0

Description: An elementwise intersection on a nonempty family is nonempty. (Contributed by BJ, 27-Apr-2021)

Ref Expression
Assertion bj-restn0 XVAWXX𝑡A

Proof

Step Hyp Ref Expression
1 n0 XyyX
2 vex yV
3 2 inex1 yAV
4 3 isseti xx=yA
5 4 jctr yXyXxx=yA
6 5 eximi yyXyyXxx=yA
7 df-rex yXxx=yAyyXxx=yA
8 6 7 sylibr yyXyXxx=yA
9 rexcom4 yXxx=yAxyXx=yA
10 8 9 sylib yyXxyXx=yA
11 10 a1i XVAWyyXxyXx=yA
12 1 11 biimtrid XVAWXxyXx=yA
13 elrest XVAWxX𝑡AyXx=yA
14 13 biimprd XVAWyXx=yAxX𝑡A
15 14 eximdv XVAWxyXx=yAxxX𝑡A
16 12 15 syld XVAWXxxX𝑡A
17 n0 X𝑡AxxX𝑡A
18 16 17 imbitrrdi XVAWXX𝑡A