Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
Set theory
Elementwise intersection (families of sets induced on a subset)
bj-restn0b
Next ⟩
bj-restpw
Metamath Proof Explorer
Ascii
Unicode
Theorem
bj-restn0b
Description:
Alternate version of
bj-restn0
.
(Contributed by
BJ
, 27-Apr-2021)
Ref
Expression
Assertion
bj-restn0b
⊢
X
∈
V
∖
∅
∧
A
∈
W
→
X
↾
𝑡
A
≠
∅
Proof
Step
Hyp
Ref
Expression
1
eldifi
⊢
X
∈
V
∖
∅
→
X
∈
V
2
eldifsni
⊢
X
∈
V
∖
∅
→
X
≠
∅
3
1
2
jca
⊢
X
∈
V
∖
∅
→
X
∈
V
∧
X
≠
∅
4
3
anim1i
⊢
X
∈
V
∖
∅
∧
A
∈
W
→
X
∈
V
∧
X
≠
∅
∧
A
∈
W
5
an32
⊢
X
∈
V
∧
X
≠
∅
∧
A
∈
W
↔
X
∈
V
∧
A
∈
W
∧
X
≠
∅
6
4
5
sylib
⊢
X
∈
V
∖
∅
∧
A
∈
W
→
X
∈
V
∧
A
∈
W
∧
X
≠
∅
7
bj-restn0
⊢
X
∈
V
∧
A
∈
W
→
X
≠
∅
→
X
↾
𝑡
A
≠
∅
8
7
imp
⊢
X
∈
V
∧
A
∈
W
∧
X
≠
∅
→
X
↾
𝑡
A
≠
∅
9
6
8
syl
⊢
X
∈
V
∖
∅
∧
A
∈
W
→
X
↾
𝑡
A
≠
∅