Metamath Proof Explorer


Theorem bj-restpw

Description: The elementwise intersection on a powerset is the powerset of the intersection. This allows to prove for instance that the topology induced on a subset by the discrete topology is the discrete topology on that subset. See also restdis (which uses distop and restopn2 ). (Contributed by BJ, 27-Apr-2021)

Ref Expression
Assertion bj-restpw ( ( 𝑌𝑉𝐴𝑊 ) → ( 𝒫 𝑌t 𝐴 ) = 𝒫 ( 𝑌𝐴 ) )

Proof

Step Hyp Ref Expression
1 pwexg ( 𝑌𝑉 → 𝒫 𝑌 ∈ V )
2 elrest ( ( 𝒫 𝑌 ∈ V ∧ 𝐴𝑊 ) → ( 𝑥 ∈ ( 𝒫 𝑌t 𝐴 ) ↔ ∃ 𝑦 ∈ 𝒫 𝑌 𝑥 = ( 𝑦𝐴 ) ) )
3 1 2 sylan ( ( 𝑌𝑉𝐴𝑊 ) → ( 𝑥 ∈ ( 𝒫 𝑌t 𝐴 ) ↔ ∃ 𝑦 ∈ 𝒫 𝑌 𝑥 = ( 𝑦𝐴 ) ) )
4 velpw ( 𝑦 ∈ 𝒫 𝑌𝑦𝑌 )
5 4 anbi1i ( ( 𝑦 ∈ 𝒫 𝑌𝑥 = ( 𝑦𝐴 ) ) ↔ ( 𝑦𝑌𝑥 = ( 𝑦𝐴 ) ) )
6 5 exbii ( ∃ 𝑦 ( 𝑦 ∈ 𝒫 𝑌𝑥 = ( 𝑦𝐴 ) ) ↔ ∃ 𝑦 ( 𝑦𝑌𝑥 = ( 𝑦𝐴 ) ) )
7 sstr2 ( 𝑥𝑦 → ( 𝑦𝑌𝑥𝑌 ) )
8 7 com12 ( 𝑦𝑌 → ( 𝑥𝑦𝑥𝑌 ) )
9 inss1 ( 𝑦𝐴 ) ⊆ 𝑦
10 sseq1 ( 𝑥 = ( 𝑦𝐴 ) → ( 𝑥𝑦 ↔ ( 𝑦𝐴 ) ⊆ 𝑦 ) )
11 9 10 mpbiri ( 𝑥 = ( 𝑦𝐴 ) → 𝑥𝑦 )
12 8 11 impel ( ( 𝑦𝑌𝑥 = ( 𝑦𝐴 ) ) → 𝑥𝑌 )
13 inss2 ( 𝑦𝐴 ) ⊆ 𝐴
14 sseq1 ( 𝑥 = ( 𝑦𝐴 ) → ( 𝑥𝐴 ↔ ( 𝑦𝐴 ) ⊆ 𝐴 ) )
15 13 14 mpbiri ( 𝑥 = ( 𝑦𝐴 ) → 𝑥𝐴 )
16 15 adantl ( ( 𝑦𝑌𝑥 = ( 𝑦𝐴 ) ) → 𝑥𝐴 )
17 12 16 ssind ( ( 𝑦𝑌𝑥 = ( 𝑦𝐴 ) ) → 𝑥 ⊆ ( 𝑌𝐴 ) )
18 17 exlimiv ( ∃ 𝑦 ( 𝑦𝑌𝑥 = ( 𝑦𝐴 ) ) → 𝑥 ⊆ ( 𝑌𝐴 ) )
19 inss1 ( 𝑌𝐴 ) ⊆ 𝑌
20 sstr2 ( 𝑥 ⊆ ( 𝑌𝐴 ) → ( ( 𝑌𝐴 ) ⊆ 𝑌𝑥𝑌 ) )
21 19 20 mpi ( 𝑥 ⊆ ( 𝑌𝐴 ) → 𝑥𝑌 )
22 inss2 ( 𝑌𝐴 ) ⊆ 𝐴
23 sstr2 ( 𝑥 ⊆ ( 𝑌𝐴 ) → ( ( 𝑌𝐴 ) ⊆ 𝐴𝑥𝐴 ) )
24 22 23 mpi ( 𝑥 ⊆ ( 𝑌𝐴 ) → 𝑥𝐴 )
25 ssidd ( 𝑥𝐴𝑥𝑥 )
26 id ( 𝑥𝐴𝑥𝐴 )
27 25 26 ssind ( 𝑥𝐴𝑥 ⊆ ( 𝑥𝐴 ) )
28 inss1 ( 𝑥𝐴 ) ⊆ 𝑥
29 28 a1i ( 𝑥𝐴 → ( 𝑥𝐴 ) ⊆ 𝑥 )
30 27 29 eqssd ( 𝑥𝐴𝑥 = ( 𝑥𝐴 ) )
31 vex 𝑥 ∈ V
32 sseq1 ( 𝑦 = 𝑥 → ( 𝑦𝑌𝑥𝑌 ) )
33 ineq1 ( 𝑦 = 𝑥 → ( 𝑦𝐴 ) = ( 𝑥𝐴 ) )
34 33 eqeq2d ( 𝑦 = 𝑥 → ( 𝑥 = ( 𝑦𝐴 ) ↔ 𝑥 = ( 𝑥𝐴 ) ) )
35 32 34 anbi12d ( 𝑦 = 𝑥 → ( ( 𝑦𝑌𝑥 = ( 𝑦𝐴 ) ) ↔ ( 𝑥𝑌𝑥 = ( 𝑥𝐴 ) ) ) )
36 31 35 spcev ( ( 𝑥𝑌𝑥 = ( 𝑥𝐴 ) ) → ∃ 𝑦 ( 𝑦𝑌𝑥 = ( 𝑦𝐴 ) ) )
37 30 36 sylan2 ( ( 𝑥𝑌𝑥𝐴 ) → ∃ 𝑦 ( 𝑦𝑌𝑥 = ( 𝑦𝐴 ) ) )
38 21 24 37 syl2anc ( 𝑥 ⊆ ( 𝑌𝐴 ) → ∃ 𝑦 ( 𝑦𝑌𝑥 = ( 𝑦𝐴 ) ) )
39 18 38 impbii ( ∃ 𝑦 ( 𝑦𝑌𝑥 = ( 𝑦𝐴 ) ) ↔ 𝑥 ⊆ ( 𝑌𝐴 ) )
40 6 39 bitri ( ∃ 𝑦 ( 𝑦 ∈ 𝒫 𝑌𝑥 = ( 𝑦𝐴 ) ) ↔ 𝑥 ⊆ ( 𝑌𝐴 ) )
41 df-rex ( ∃ 𝑦 ∈ 𝒫 𝑌 𝑥 = ( 𝑦𝐴 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝒫 𝑌𝑥 = ( 𝑦𝐴 ) ) )
42 velpw ( 𝑥 ∈ 𝒫 ( 𝑌𝐴 ) ↔ 𝑥 ⊆ ( 𝑌𝐴 ) )
43 40 41 42 3bitr4i ( ∃ 𝑦 ∈ 𝒫 𝑌 𝑥 = ( 𝑦𝐴 ) ↔ 𝑥 ∈ 𝒫 ( 𝑌𝐴 ) )
44 3 43 bitrdi ( ( 𝑌𝑉𝐴𝑊 ) → ( 𝑥 ∈ ( 𝒫 𝑌t 𝐴 ) ↔ 𝑥 ∈ 𝒫 ( 𝑌𝐴 ) ) )
45 44 eqrdv ( ( 𝑌𝑉𝐴𝑊 ) → ( 𝒫 𝑌t 𝐴 ) = 𝒫 ( 𝑌𝐴 ) )