| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwexg | ⊢ ( 𝑌  ∈  𝑉  →  𝒫  𝑌  ∈  V ) | 
						
							| 2 |  | elrest | ⊢ ( ( 𝒫  𝑌  ∈  V  ∧  𝐴  ∈  𝑊 )  →  ( 𝑥  ∈  ( 𝒫  𝑌  ↾t  𝐴 )  ↔  ∃ 𝑦  ∈  𝒫  𝑌 𝑥  =  ( 𝑦  ∩  𝐴 ) ) ) | 
						
							| 3 | 1 2 | sylan | ⊢ ( ( 𝑌  ∈  𝑉  ∧  𝐴  ∈  𝑊 )  →  ( 𝑥  ∈  ( 𝒫  𝑌  ↾t  𝐴 )  ↔  ∃ 𝑦  ∈  𝒫  𝑌 𝑥  =  ( 𝑦  ∩  𝐴 ) ) ) | 
						
							| 4 |  | velpw | ⊢ ( 𝑦  ∈  𝒫  𝑌  ↔  𝑦  ⊆  𝑌 ) | 
						
							| 5 | 4 | anbi1i | ⊢ ( ( 𝑦  ∈  𝒫  𝑌  ∧  𝑥  =  ( 𝑦  ∩  𝐴 ) )  ↔  ( 𝑦  ⊆  𝑌  ∧  𝑥  =  ( 𝑦  ∩  𝐴 ) ) ) | 
						
							| 6 | 5 | exbii | ⊢ ( ∃ 𝑦 ( 𝑦  ∈  𝒫  𝑌  ∧  𝑥  =  ( 𝑦  ∩  𝐴 ) )  ↔  ∃ 𝑦 ( 𝑦  ⊆  𝑌  ∧  𝑥  =  ( 𝑦  ∩  𝐴 ) ) ) | 
						
							| 7 |  | sstr2 | ⊢ ( 𝑥  ⊆  𝑦  →  ( 𝑦  ⊆  𝑌  →  𝑥  ⊆  𝑌 ) ) | 
						
							| 8 | 7 | com12 | ⊢ ( 𝑦  ⊆  𝑌  →  ( 𝑥  ⊆  𝑦  →  𝑥  ⊆  𝑌 ) ) | 
						
							| 9 |  | inss1 | ⊢ ( 𝑦  ∩  𝐴 )  ⊆  𝑦 | 
						
							| 10 |  | sseq1 | ⊢ ( 𝑥  =  ( 𝑦  ∩  𝐴 )  →  ( 𝑥  ⊆  𝑦  ↔  ( 𝑦  ∩  𝐴 )  ⊆  𝑦 ) ) | 
						
							| 11 | 9 10 | mpbiri | ⊢ ( 𝑥  =  ( 𝑦  ∩  𝐴 )  →  𝑥  ⊆  𝑦 ) | 
						
							| 12 | 8 11 | impel | ⊢ ( ( 𝑦  ⊆  𝑌  ∧  𝑥  =  ( 𝑦  ∩  𝐴 ) )  →  𝑥  ⊆  𝑌 ) | 
						
							| 13 |  | inss2 | ⊢ ( 𝑦  ∩  𝐴 )  ⊆  𝐴 | 
						
							| 14 |  | sseq1 | ⊢ ( 𝑥  =  ( 𝑦  ∩  𝐴 )  →  ( 𝑥  ⊆  𝐴  ↔  ( 𝑦  ∩  𝐴 )  ⊆  𝐴 ) ) | 
						
							| 15 | 13 14 | mpbiri | ⊢ ( 𝑥  =  ( 𝑦  ∩  𝐴 )  →  𝑥  ⊆  𝐴 ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝑦  ⊆  𝑌  ∧  𝑥  =  ( 𝑦  ∩  𝐴 ) )  →  𝑥  ⊆  𝐴 ) | 
						
							| 17 | 12 16 | ssind | ⊢ ( ( 𝑦  ⊆  𝑌  ∧  𝑥  =  ( 𝑦  ∩  𝐴 ) )  →  𝑥  ⊆  ( 𝑌  ∩  𝐴 ) ) | 
						
							| 18 | 17 | exlimiv | ⊢ ( ∃ 𝑦 ( 𝑦  ⊆  𝑌  ∧  𝑥  =  ( 𝑦  ∩  𝐴 ) )  →  𝑥  ⊆  ( 𝑌  ∩  𝐴 ) ) | 
						
							| 19 |  | inss1 | ⊢ ( 𝑌  ∩  𝐴 )  ⊆  𝑌 | 
						
							| 20 |  | sstr2 | ⊢ ( 𝑥  ⊆  ( 𝑌  ∩  𝐴 )  →  ( ( 𝑌  ∩  𝐴 )  ⊆  𝑌  →  𝑥  ⊆  𝑌 ) ) | 
						
							| 21 | 19 20 | mpi | ⊢ ( 𝑥  ⊆  ( 𝑌  ∩  𝐴 )  →  𝑥  ⊆  𝑌 ) | 
						
							| 22 |  | inss2 | ⊢ ( 𝑌  ∩  𝐴 )  ⊆  𝐴 | 
						
							| 23 |  | sstr2 | ⊢ ( 𝑥  ⊆  ( 𝑌  ∩  𝐴 )  →  ( ( 𝑌  ∩  𝐴 )  ⊆  𝐴  →  𝑥  ⊆  𝐴 ) ) | 
						
							| 24 | 22 23 | mpi | ⊢ ( 𝑥  ⊆  ( 𝑌  ∩  𝐴 )  →  𝑥  ⊆  𝐴 ) | 
						
							| 25 |  | ssidd | ⊢ ( 𝑥  ⊆  𝐴  →  𝑥  ⊆  𝑥 ) | 
						
							| 26 |  | id | ⊢ ( 𝑥  ⊆  𝐴  →  𝑥  ⊆  𝐴 ) | 
						
							| 27 | 25 26 | ssind | ⊢ ( 𝑥  ⊆  𝐴  →  𝑥  ⊆  ( 𝑥  ∩  𝐴 ) ) | 
						
							| 28 |  | inss1 | ⊢ ( 𝑥  ∩  𝐴 )  ⊆  𝑥 | 
						
							| 29 | 28 | a1i | ⊢ ( 𝑥  ⊆  𝐴  →  ( 𝑥  ∩  𝐴 )  ⊆  𝑥 ) | 
						
							| 30 | 27 29 | eqssd | ⊢ ( 𝑥  ⊆  𝐴  →  𝑥  =  ( 𝑥  ∩  𝐴 ) ) | 
						
							| 31 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 32 |  | sseq1 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  ⊆  𝑌  ↔  𝑥  ⊆  𝑌 ) ) | 
						
							| 33 |  | ineq1 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  ∩  𝐴 )  =  ( 𝑥  ∩  𝐴 ) ) | 
						
							| 34 | 33 | eqeq2d | ⊢ ( 𝑦  =  𝑥  →  ( 𝑥  =  ( 𝑦  ∩  𝐴 )  ↔  𝑥  =  ( 𝑥  ∩  𝐴 ) ) ) | 
						
							| 35 | 32 34 | anbi12d | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝑦  ⊆  𝑌  ∧  𝑥  =  ( 𝑦  ∩  𝐴 ) )  ↔  ( 𝑥  ⊆  𝑌  ∧  𝑥  =  ( 𝑥  ∩  𝐴 ) ) ) ) | 
						
							| 36 | 31 35 | spcev | ⊢ ( ( 𝑥  ⊆  𝑌  ∧  𝑥  =  ( 𝑥  ∩  𝐴 ) )  →  ∃ 𝑦 ( 𝑦  ⊆  𝑌  ∧  𝑥  =  ( 𝑦  ∩  𝐴 ) ) ) | 
						
							| 37 | 30 36 | sylan2 | ⊢ ( ( 𝑥  ⊆  𝑌  ∧  𝑥  ⊆  𝐴 )  →  ∃ 𝑦 ( 𝑦  ⊆  𝑌  ∧  𝑥  =  ( 𝑦  ∩  𝐴 ) ) ) | 
						
							| 38 | 21 24 37 | syl2anc | ⊢ ( 𝑥  ⊆  ( 𝑌  ∩  𝐴 )  →  ∃ 𝑦 ( 𝑦  ⊆  𝑌  ∧  𝑥  =  ( 𝑦  ∩  𝐴 ) ) ) | 
						
							| 39 | 18 38 | impbii | ⊢ ( ∃ 𝑦 ( 𝑦  ⊆  𝑌  ∧  𝑥  =  ( 𝑦  ∩  𝐴 ) )  ↔  𝑥  ⊆  ( 𝑌  ∩  𝐴 ) ) | 
						
							| 40 | 6 39 | bitri | ⊢ ( ∃ 𝑦 ( 𝑦  ∈  𝒫  𝑌  ∧  𝑥  =  ( 𝑦  ∩  𝐴 ) )  ↔  𝑥  ⊆  ( 𝑌  ∩  𝐴 ) ) | 
						
							| 41 |  | df-rex | ⊢ ( ∃ 𝑦  ∈  𝒫  𝑌 𝑥  =  ( 𝑦  ∩  𝐴 )  ↔  ∃ 𝑦 ( 𝑦  ∈  𝒫  𝑌  ∧  𝑥  =  ( 𝑦  ∩  𝐴 ) ) ) | 
						
							| 42 |  | velpw | ⊢ ( 𝑥  ∈  𝒫  ( 𝑌  ∩  𝐴 )  ↔  𝑥  ⊆  ( 𝑌  ∩  𝐴 ) ) | 
						
							| 43 | 40 41 42 | 3bitr4i | ⊢ ( ∃ 𝑦  ∈  𝒫  𝑌 𝑥  =  ( 𝑦  ∩  𝐴 )  ↔  𝑥  ∈  𝒫  ( 𝑌  ∩  𝐴 ) ) | 
						
							| 44 | 3 43 | bitrdi | ⊢ ( ( 𝑌  ∈  𝑉  ∧  𝐴  ∈  𝑊 )  →  ( 𝑥  ∈  ( 𝒫  𝑌  ↾t  𝐴 )  ↔  𝑥  ∈  𝒫  ( 𝑌  ∩  𝐴 ) ) ) | 
						
							| 45 | 44 | eqrdv | ⊢ ( ( 𝑌  ∈  𝑉  ∧  𝐴  ∈  𝑊 )  →  ( 𝒫  𝑌  ↾t  𝐴 )  =  𝒫  ( 𝑌  ∩  𝐴 ) ) |