Step |
Hyp |
Ref |
Expression |
1 |
|
pwexg |
⊢ ( 𝑌 ∈ 𝑉 → 𝒫 𝑌 ∈ V ) |
2 |
|
elrest |
⊢ ( ( 𝒫 𝑌 ∈ V ∧ 𝐴 ∈ 𝑊 ) → ( 𝑥 ∈ ( 𝒫 𝑌 ↾t 𝐴 ) ↔ ∃ 𝑦 ∈ 𝒫 𝑌 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) |
3 |
1 2
|
sylan |
⊢ ( ( 𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝑥 ∈ ( 𝒫 𝑌 ↾t 𝐴 ) ↔ ∃ 𝑦 ∈ 𝒫 𝑌 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) |
4 |
|
velpw |
⊢ ( 𝑦 ∈ 𝒫 𝑌 ↔ 𝑦 ⊆ 𝑌 ) |
5 |
4
|
anbi1i |
⊢ ( ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ↔ ( 𝑦 ⊆ 𝑌 ∧ 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) |
6 |
5
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ↔ ∃ 𝑦 ( 𝑦 ⊆ 𝑌 ∧ 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) |
7 |
|
sstr2 |
⊢ ( 𝑥 ⊆ 𝑦 → ( 𝑦 ⊆ 𝑌 → 𝑥 ⊆ 𝑌 ) ) |
8 |
7
|
com12 |
⊢ ( 𝑦 ⊆ 𝑌 → ( 𝑥 ⊆ 𝑦 → 𝑥 ⊆ 𝑌 ) ) |
9 |
|
inss1 |
⊢ ( 𝑦 ∩ 𝐴 ) ⊆ 𝑦 |
10 |
|
sseq1 |
⊢ ( 𝑥 = ( 𝑦 ∩ 𝐴 ) → ( 𝑥 ⊆ 𝑦 ↔ ( 𝑦 ∩ 𝐴 ) ⊆ 𝑦 ) ) |
11 |
9 10
|
mpbiri |
⊢ ( 𝑥 = ( 𝑦 ∩ 𝐴 ) → 𝑥 ⊆ 𝑦 ) |
12 |
8 11
|
impel |
⊢ ( ( 𝑦 ⊆ 𝑌 ∧ 𝑥 = ( 𝑦 ∩ 𝐴 ) ) → 𝑥 ⊆ 𝑌 ) |
13 |
|
inss2 |
⊢ ( 𝑦 ∩ 𝐴 ) ⊆ 𝐴 |
14 |
|
sseq1 |
⊢ ( 𝑥 = ( 𝑦 ∩ 𝐴 ) → ( 𝑥 ⊆ 𝐴 ↔ ( 𝑦 ∩ 𝐴 ) ⊆ 𝐴 ) ) |
15 |
13 14
|
mpbiri |
⊢ ( 𝑥 = ( 𝑦 ∩ 𝐴 ) → 𝑥 ⊆ 𝐴 ) |
16 |
15
|
adantl |
⊢ ( ( 𝑦 ⊆ 𝑌 ∧ 𝑥 = ( 𝑦 ∩ 𝐴 ) ) → 𝑥 ⊆ 𝐴 ) |
17 |
12 16
|
ssind |
⊢ ( ( 𝑦 ⊆ 𝑌 ∧ 𝑥 = ( 𝑦 ∩ 𝐴 ) ) → 𝑥 ⊆ ( 𝑌 ∩ 𝐴 ) ) |
18 |
17
|
exlimiv |
⊢ ( ∃ 𝑦 ( 𝑦 ⊆ 𝑌 ∧ 𝑥 = ( 𝑦 ∩ 𝐴 ) ) → 𝑥 ⊆ ( 𝑌 ∩ 𝐴 ) ) |
19 |
|
inss1 |
⊢ ( 𝑌 ∩ 𝐴 ) ⊆ 𝑌 |
20 |
|
sstr2 |
⊢ ( 𝑥 ⊆ ( 𝑌 ∩ 𝐴 ) → ( ( 𝑌 ∩ 𝐴 ) ⊆ 𝑌 → 𝑥 ⊆ 𝑌 ) ) |
21 |
19 20
|
mpi |
⊢ ( 𝑥 ⊆ ( 𝑌 ∩ 𝐴 ) → 𝑥 ⊆ 𝑌 ) |
22 |
|
inss2 |
⊢ ( 𝑌 ∩ 𝐴 ) ⊆ 𝐴 |
23 |
|
sstr2 |
⊢ ( 𝑥 ⊆ ( 𝑌 ∩ 𝐴 ) → ( ( 𝑌 ∩ 𝐴 ) ⊆ 𝐴 → 𝑥 ⊆ 𝐴 ) ) |
24 |
22 23
|
mpi |
⊢ ( 𝑥 ⊆ ( 𝑌 ∩ 𝐴 ) → 𝑥 ⊆ 𝐴 ) |
25 |
|
ssidd |
⊢ ( 𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝑥 ) |
26 |
|
id |
⊢ ( 𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐴 ) |
27 |
25 26
|
ssind |
⊢ ( 𝑥 ⊆ 𝐴 → 𝑥 ⊆ ( 𝑥 ∩ 𝐴 ) ) |
28 |
|
inss1 |
⊢ ( 𝑥 ∩ 𝐴 ) ⊆ 𝑥 |
29 |
28
|
a1i |
⊢ ( 𝑥 ⊆ 𝐴 → ( 𝑥 ∩ 𝐴 ) ⊆ 𝑥 ) |
30 |
27 29
|
eqssd |
⊢ ( 𝑥 ⊆ 𝐴 → 𝑥 = ( 𝑥 ∩ 𝐴 ) ) |
31 |
|
vex |
⊢ 𝑥 ∈ V |
32 |
|
sseq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ⊆ 𝑌 ↔ 𝑥 ⊆ 𝑌 ) ) |
33 |
|
ineq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∩ 𝐴 ) = ( 𝑥 ∩ 𝐴 ) ) |
34 |
33
|
eqeq2d |
⊢ ( 𝑦 = 𝑥 → ( 𝑥 = ( 𝑦 ∩ 𝐴 ) ↔ 𝑥 = ( 𝑥 ∩ 𝐴 ) ) ) |
35 |
32 34
|
anbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ⊆ 𝑌 ∧ 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ↔ ( 𝑥 ⊆ 𝑌 ∧ 𝑥 = ( 𝑥 ∩ 𝐴 ) ) ) ) |
36 |
31 35
|
spcev |
⊢ ( ( 𝑥 ⊆ 𝑌 ∧ 𝑥 = ( 𝑥 ∩ 𝐴 ) ) → ∃ 𝑦 ( 𝑦 ⊆ 𝑌 ∧ 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) |
37 |
30 36
|
sylan2 |
⊢ ( ( 𝑥 ⊆ 𝑌 ∧ 𝑥 ⊆ 𝐴 ) → ∃ 𝑦 ( 𝑦 ⊆ 𝑌 ∧ 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) |
38 |
21 24 37
|
syl2anc |
⊢ ( 𝑥 ⊆ ( 𝑌 ∩ 𝐴 ) → ∃ 𝑦 ( 𝑦 ⊆ 𝑌 ∧ 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) |
39 |
18 38
|
impbii |
⊢ ( ∃ 𝑦 ( 𝑦 ⊆ 𝑌 ∧ 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ↔ 𝑥 ⊆ ( 𝑌 ∩ 𝐴 ) ) |
40 |
6 39
|
bitri |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ↔ 𝑥 ⊆ ( 𝑌 ∩ 𝐴 ) ) |
41 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝒫 𝑌 𝑥 = ( 𝑦 ∩ 𝐴 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) |
42 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 ( 𝑌 ∩ 𝐴 ) ↔ 𝑥 ⊆ ( 𝑌 ∩ 𝐴 ) ) |
43 |
40 41 42
|
3bitr4i |
⊢ ( ∃ 𝑦 ∈ 𝒫 𝑌 𝑥 = ( 𝑦 ∩ 𝐴 ) ↔ 𝑥 ∈ 𝒫 ( 𝑌 ∩ 𝐴 ) ) |
44 |
3 43
|
bitrdi |
⊢ ( ( 𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝑥 ∈ ( 𝒫 𝑌 ↾t 𝐴 ) ↔ 𝑥 ∈ 𝒫 ( 𝑌 ∩ 𝐴 ) ) ) |
45 |
44
|
eqrdv |
⊢ ( ( 𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝒫 𝑌 ↾t 𝐴 ) = 𝒫 ( 𝑌 ∩ 𝐴 ) ) |