| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwexg |  |-  ( Y e. V -> ~P Y e. _V ) | 
						
							| 2 |  | elrest |  |-  ( ( ~P Y e. _V /\ A e. W ) -> ( x e. ( ~P Y |`t A ) <-> E. y e. ~P Y x = ( y i^i A ) ) ) | 
						
							| 3 | 1 2 | sylan |  |-  ( ( Y e. V /\ A e. W ) -> ( x e. ( ~P Y |`t A ) <-> E. y e. ~P Y x = ( y i^i A ) ) ) | 
						
							| 4 |  | velpw |  |-  ( y e. ~P Y <-> y C_ Y ) | 
						
							| 5 | 4 | anbi1i |  |-  ( ( y e. ~P Y /\ x = ( y i^i A ) ) <-> ( y C_ Y /\ x = ( y i^i A ) ) ) | 
						
							| 6 | 5 | exbii |  |-  ( E. y ( y e. ~P Y /\ x = ( y i^i A ) ) <-> E. y ( y C_ Y /\ x = ( y i^i A ) ) ) | 
						
							| 7 |  | sstr2 |  |-  ( x C_ y -> ( y C_ Y -> x C_ Y ) ) | 
						
							| 8 | 7 | com12 |  |-  ( y C_ Y -> ( x C_ y -> x C_ Y ) ) | 
						
							| 9 |  | inss1 |  |-  ( y i^i A ) C_ y | 
						
							| 10 |  | sseq1 |  |-  ( x = ( y i^i A ) -> ( x C_ y <-> ( y i^i A ) C_ y ) ) | 
						
							| 11 | 9 10 | mpbiri |  |-  ( x = ( y i^i A ) -> x C_ y ) | 
						
							| 12 | 8 11 | impel |  |-  ( ( y C_ Y /\ x = ( y i^i A ) ) -> x C_ Y ) | 
						
							| 13 |  | inss2 |  |-  ( y i^i A ) C_ A | 
						
							| 14 |  | sseq1 |  |-  ( x = ( y i^i A ) -> ( x C_ A <-> ( y i^i A ) C_ A ) ) | 
						
							| 15 | 13 14 | mpbiri |  |-  ( x = ( y i^i A ) -> x C_ A ) | 
						
							| 16 | 15 | adantl |  |-  ( ( y C_ Y /\ x = ( y i^i A ) ) -> x C_ A ) | 
						
							| 17 | 12 16 | ssind |  |-  ( ( y C_ Y /\ x = ( y i^i A ) ) -> x C_ ( Y i^i A ) ) | 
						
							| 18 | 17 | exlimiv |  |-  ( E. y ( y C_ Y /\ x = ( y i^i A ) ) -> x C_ ( Y i^i A ) ) | 
						
							| 19 |  | inss1 |  |-  ( Y i^i A ) C_ Y | 
						
							| 20 |  | sstr2 |  |-  ( x C_ ( Y i^i A ) -> ( ( Y i^i A ) C_ Y -> x C_ Y ) ) | 
						
							| 21 | 19 20 | mpi |  |-  ( x C_ ( Y i^i A ) -> x C_ Y ) | 
						
							| 22 |  | inss2 |  |-  ( Y i^i A ) C_ A | 
						
							| 23 |  | sstr2 |  |-  ( x C_ ( Y i^i A ) -> ( ( Y i^i A ) C_ A -> x C_ A ) ) | 
						
							| 24 | 22 23 | mpi |  |-  ( x C_ ( Y i^i A ) -> x C_ A ) | 
						
							| 25 |  | ssidd |  |-  ( x C_ A -> x C_ x ) | 
						
							| 26 |  | id |  |-  ( x C_ A -> x C_ A ) | 
						
							| 27 | 25 26 | ssind |  |-  ( x C_ A -> x C_ ( x i^i A ) ) | 
						
							| 28 |  | inss1 |  |-  ( x i^i A ) C_ x | 
						
							| 29 | 28 | a1i |  |-  ( x C_ A -> ( x i^i A ) C_ x ) | 
						
							| 30 | 27 29 | eqssd |  |-  ( x C_ A -> x = ( x i^i A ) ) | 
						
							| 31 |  | vex |  |-  x e. _V | 
						
							| 32 |  | sseq1 |  |-  ( y = x -> ( y C_ Y <-> x C_ Y ) ) | 
						
							| 33 |  | ineq1 |  |-  ( y = x -> ( y i^i A ) = ( x i^i A ) ) | 
						
							| 34 | 33 | eqeq2d |  |-  ( y = x -> ( x = ( y i^i A ) <-> x = ( x i^i A ) ) ) | 
						
							| 35 | 32 34 | anbi12d |  |-  ( y = x -> ( ( y C_ Y /\ x = ( y i^i A ) ) <-> ( x C_ Y /\ x = ( x i^i A ) ) ) ) | 
						
							| 36 | 31 35 | spcev |  |-  ( ( x C_ Y /\ x = ( x i^i A ) ) -> E. y ( y C_ Y /\ x = ( y i^i A ) ) ) | 
						
							| 37 | 30 36 | sylan2 |  |-  ( ( x C_ Y /\ x C_ A ) -> E. y ( y C_ Y /\ x = ( y i^i A ) ) ) | 
						
							| 38 | 21 24 37 | syl2anc |  |-  ( x C_ ( Y i^i A ) -> E. y ( y C_ Y /\ x = ( y i^i A ) ) ) | 
						
							| 39 | 18 38 | impbii |  |-  ( E. y ( y C_ Y /\ x = ( y i^i A ) ) <-> x C_ ( Y i^i A ) ) | 
						
							| 40 | 6 39 | bitri |  |-  ( E. y ( y e. ~P Y /\ x = ( y i^i A ) ) <-> x C_ ( Y i^i A ) ) | 
						
							| 41 |  | df-rex |  |-  ( E. y e. ~P Y x = ( y i^i A ) <-> E. y ( y e. ~P Y /\ x = ( y i^i A ) ) ) | 
						
							| 42 |  | velpw |  |-  ( x e. ~P ( Y i^i A ) <-> x C_ ( Y i^i A ) ) | 
						
							| 43 | 40 41 42 | 3bitr4i |  |-  ( E. y e. ~P Y x = ( y i^i A ) <-> x e. ~P ( Y i^i A ) ) | 
						
							| 44 | 3 43 | bitrdi |  |-  ( ( Y e. V /\ A e. W ) -> ( x e. ( ~P Y |`t A ) <-> x e. ~P ( Y i^i A ) ) ) | 
						
							| 45 | 44 | eqrdv |  |-  ( ( Y e. V /\ A e. W ) -> ( ~P Y |`t A ) = ~P ( Y i^i A ) ) |