Metamath Proof Explorer


Theorem bj-restpw

Description: The elementwise intersection on a powerset is the powerset of the intersection. This allows to prove for instance that the topology induced on a subset by the discrete topology is the discrete topology on that subset. See also restdis (which uses distop and restopn2 ). (Contributed by BJ, 27-Apr-2021)

Ref Expression
Assertion bj-restpw
|- ( ( Y e. V /\ A e. W ) -> ( ~P Y |`t A ) = ~P ( Y i^i A ) )

Proof

Step Hyp Ref Expression
1 pwexg
 |-  ( Y e. V -> ~P Y e. _V )
2 elrest
 |-  ( ( ~P Y e. _V /\ A e. W ) -> ( x e. ( ~P Y |`t A ) <-> E. y e. ~P Y x = ( y i^i A ) ) )
3 1 2 sylan
 |-  ( ( Y e. V /\ A e. W ) -> ( x e. ( ~P Y |`t A ) <-> E. y e. ~P Y x = ( y i^i A ) ) )
4 velpw
 |-  ( y e. ~P Y <-> y C_ Y )
5 4 anbi1i
 |-  ( ( y e. ~P Y /\ x = ( y i^i A ) ) <-> ( y C_ Y /\ x = ( y i^i A ) ) )
6 5 exbii
 |-  ( E. y ( y e. ~P Y /\ x = ( y i^i A ) ) <-> E. y ( y C_ Y /\ x = ( y i^i A ) ) )
7 sstr2
 |-  ( x C_ y -> ( y C_ Y -> x C_ Y ) )
8 7 com12
 |-  ( y C_ Y -> ( x C_ y -> x C_ Y ) )
9 inss1
 |-  ( y i^i A ) C_ y
10 sseq1
 |-  ( x = ( y i^i A ) -> ( x C_ y <-> ( y i^i A ) C_ y ) )
11 9 10 mpbiri
 |-  ( x = ( y i^i A ) -> x C_ y )
12 8 11 impel
 |-  ( ( y C_ Y /\ x = ( y i^i A ) ) -> x C_ Y )
13 inss2
 |-  ( y i^i A ) C_ A
14 sseq1
 |-  ( x = ( y i^i A ) -> ( x C_ A <-> ( y i^i A ) C_ A ) )
15 13 14 mpbiri
 |-  ( x = ( y i^i A ) -> x C_ A )
16 15 adantl
 |-  ( ( y C_ Y /\ x = ( y i^i A ) ) -> x C_ A )
17 12 16 ssind
 |-  ( ( y C_ Y /\ x = ( y i^i A ) ) -> x C_ ( Y i^i A ) )
18 17 exlimiv
 |-  ( E. y ( y C_ Y /\ x = ( y i^i A ) ) -> x C_ ( Y i^i A ) )
19 inss1
 |-  ( Y i^i A ) C_ Y
20 sstr2
 |-  ( x C_ ( Y i^i A ) -> ( ( Y i^i A ) C_ Y -> x C_ Y ) )
21 19 20 mpi
 |-  ( x C_ ( Y i^i A ) -> x C_ Y )
22 inss2
 |-  ( Y i^i A ) C_ A
23 sstr2
 |-  ( x C_ ( Y i^i A ) -> ( ( Y i^i A ) C_ A -> x C_ A ) )
24 22 23 mpi
 |-  ( x C_ ( Y i^i A ) -> x C_ A )
25 ssidd
 |-  ( x C_ A -> x C_ x )
26 id
 |-  ( x C_ A -> x C_ A )
27 25 26 ssind
 |-  ( x C_ A -> x C_ ( x i^i A ) )
28 inss1
 |-  ( x i^i A ) C_ x
29 28 a1i
 |-  ( x C_ A -> ( x i^i A ) C_ x )
30 27 29 eqssd
 |-  ( x C_ A -> x = ( x i^i A ) )
31 vex
 |-  x e. _V
32 sseq1
 |-  ( y = x -> ( y C_ Y <-> x C_ Y ) )
33 ineq1
 |-  ( y = x -> ( y i^i A ) = ( x i^i A ) )
34 33 eqeq2d
 |-  ( y = x -> ( x = ( y i^i A ) <-> x = ( x i^i A ) ) )
35 32 34 anbi12d
 |-  ( y = x -> ( ( y C_ Y /\ x = ( y i^i A ) ) <-> ( x C_ Y /\ x = ( x i^i A ) ) ) )
36 31 35 spcev
 |-  ( ( x C_ Y /\ x = ( x i^i A ) ) -> E. y ( y C_ Y /\ x = ( y i^i A ) ) )
37 30 36 sylan2
 |-  ( ( x C_ Y /\ x C_ A ) -> E. y ( y C_ Y /\ x = ( y i^i A ) ) )
38 21 24 37 syl2anc
 |-  ( x C_ ( Y i^i A ) -> E. y ( y C_ Y /\ x = ( y i^i A ) ) )
39 18 38 impbii
 |-  ( E. y ( y C_ Y /\ x = ( y i^i A ) ) <-> x C_ ( Y i^i A ) )
40 6 39 bitri
 |-  ( E. y ( y e. ~P Y /\ x = ( y i^i A ) ) <-> x C_ ( Y i^i A ) )
41 df-rex
 |-  ( E. y e. ~P Y x = ( y i^i A ) <-> E. y ( y e. ~P Y /\ x = ( y i^i A ) ) )
42 velpw
 |-  ( x e. ~P ( Y i^i A ) <-> x C_ ( Y i^i A ) )
43 40 41 42 3bitr4i
 |-  ( E. y e. ~P Y x = ( y i^i A ) <-> x e. ~P ( Y i^i A ) )
44 3 43 bitrdi
 |-  ( ( Y e. V /\ A e. W ) -> ( x e. ( ~P Y |`t A ) <-> x e. ~P ( Y i^i A ) ) )
45 44 eqrdv
 |-  ( ( Y e. V /\ A e. W ) -> ( ~P Y |`t A ) = ~P ( Y i^i A ) )