Step |
Hyp |
Ref |
Expression |
1 |
|
pwexg |
|- ( Y e. V -> ~P Y e. _V ) |
2 |
|
elrest |
|- ( ( ~P Y e. _V /\ A e. W ) -> ( x e. ( ~P Y |`t A ) <-> E. y e. ~P Y x = ( y i^i A ) ) ) |
3 |
1 2
|
sylan |
|- ( ( Y e. V /\ A e. W ) -> ( x e. ( ~P Y |`t A ) <-> E. y e. ~P Y x = ( y i^i A ) ) ) |
4 |
|
velpw |
|- ( y e. ~P Y <-> y C_ Y ) |
5 |
4
|
anbi1i |
|- ( ( y e. ~P Y /\ x = ( y i^i A ) ) <-> ( y C_ Y /\ x = ( y i^i A ) ) ) |
6 |
5
|
exbii |
|- ( E. y ( y e. ~P Y /\ x = ( y i^i A ) ) <-> E. y ( y C_ Y /\ x = ( y i^i A ) ) ) |
7 |
|
sstr2 |
|- ( x C_ y -> ( y C_ Y -> x C_ Y ) ) |
8 |
7
|
com12 |
|- ( y C_ Y -> ( x C_ y -> x C_ Y ) ) |
9 |
|
inss1 |
|- ( y i^i A ) C_ y |
10 |
|
sseq1 |
|- ( x = ( y i^i A ) -> ( x C_ y <-> ( y i^i A ) C_ y ) ) |
11 |
9 10
|
mpbiri |
|- ( x = ( y i^i A ) -> x C_ y ) |
12 |
8 11
|
impel |
|- ( ( y C_ Y /\ x = ( y i^i A ) ) -> x C_ Y ) |
13 |
|
inss2 |
|- ( y i^i A ) C_ A |
14 |
|
sseq1 |
|- ( x = ( y i^i A ) -> ( x C_ A <-> ( y i^i A ) C_ A ) ) |
15 |
13 14
|
mpbiri |
|- ( x = ( y i^i A ) -> x C_ A ) |
16 |
15
|
adantl |
|- ( ( y C_ Y /\ x = ( y i^i A ) ) -> x C_ A ) |
17 |
12 16
|
ssind |
|- ( ( y C_ Y /\ x = ( y i^i A ) ) -> x C_ ( Y i^i A ) ) |
18 |
17
|
exlimiv |
|- ( E. y ( y C_ Y /\ x = ( y i^i A ) ) -> x C_ ( Y i^i A ) ) |
19 |
|
inss1 |
|- ( Y i^i A ) C_ Y |
20 |
|
sstr2 |
|- ( x C_ ( Y i^i A ) -> ( ( Y i^i A ) C_ Y -> x C_ Y ) ) |
21 |
19 20
|
mpi |
|- ( x C_ ( Y i^i A ) -> x C_ Y ) |
22 |
|
inss2 |
|- ( Y i^i A ) C_ A |
23 |
|
sstr2 |
|- ( x C_ ( Y i^i A ) -> ( ( Y i^i A ) C_ A -> x C_ A ) ) |
24 |
22 23
|
mpi |
|- ( x C_ ( Y i^i A ) -> x C_ A ) |
25 |
|
ssidd |
|- ( x C_ A -> x C_ x ) |
26 |
|
id |
|- ( x C_ A -> x C_ A ) |
27 |
25 26
|
ssind |
|- ( x C_ A -> x C_ ( x i^i A ) ) |
28 |
|
inss1 |
|- ( x i^i A ) C_ x |
29 |
28
|
a1i |
|- ( x C_ A -> ( x i^i A ) C_ x ) |
30 |
27 29
|
eqssd |
|- ( x C_ A -> x = ( x i^i A ) ) |
31 |
|
vex |
|- x e. _V |
32 |
|
sseq1 |
|- ( y = x -> ( y C_ Y <-> x C_ Y ) ) |
33 |
|
ineq1 |
|- ( y = x -> ( y i^i A ) = ( x i^i A ) ) |
34 |
33
|
eqeq2d |
|- ( y = x -> ( x = ( y i^i A ) <-> x = ( x i^i A ) ) ) |
35 |
32 34
|
anbi12d |
|- ( y = x -> ( ( y C_ Y /\ x = ( y i^i A ) ) <-> ( x C_ Y /\ x = ( x i^i A ) ) ) ) |
36 |
31 35
|
spcev |
|- ( ( x C_ Y /\ x = ( x i^i A ) ) -> E. y ( y C_ Y /\ x = ( y i^i A ) ) ) |
37 |
30 36
|
sylan2 |
|- ( ( x C_ Y /\ x C_ A ) -> E. y ( y C_ Y /\ x = ( y i^i A ) ) ) |
38 |
21 24 37
|
syl2anc |
|- ( x C_ ( Y i^i A ) -> E. y ( y C_ Y /\ x = ( y i^i A ) ) ) |
39 |
18 38
|
impbii |
|- ( E. y ( y C_ Y /\ x = ( y i^i A ) ) <-> x C_ ( Y i^i A ) ) |
40 |
6 39
|
bitri |
|- ( E. y ( y e. ~P Y /\ x = ( y i^i A ) ) <-> x C_ ( Y i^i A ) ) |
41 |
|
df-rex |
|- ( E. y e. ~P Y x = ( y i^i A ) <-> E. y ( y e. ~P Y /\ x = ( y i^i A ) ) ) |
42 |
|
velpw |
|- ( x e. ~P ( Y i^i A ) <-> x C_ ( Y i^i A ) ) |
43 |
40 41 42
|
3bitr4i |
|- ( E. y e. ~P Y x = ( y i^i A ) <-> x e. ~P ( Y i^i A ) ) |
44 |
3 43
|
bitrdi |
|- ( ( Y e. V /\ A e. W ) -> ( x e. ( ~P Y |`t A ) <-> x e. ~P ( Y i^i A ) ) ) |
45 |
44
|
eqrdv |
|- ( ( Y e. V /\ A e. W ) -> ( ~P Y |`t A ) = ~P ( Y i^i A ) ) |