| Step | Hyp | Ref | Expression | 
						
							| 1 |  | in0 |  |-  ( A i^i (/) ) = (/) | 
						
							| 2 |  | incom |  |-  ( A i^i (/) ) = ( (/) i^i A ) | 
						
							| 3 | 1 2 | eqtr3i |  |-  (/) = ( (/) i^i A ) | 
						
							| 4 |  | 0ex |  |-  (/) e. _V | 
						
							| 5 |  | eleq1 |  |-  ( x = (/) -> ( x e. X <-> (/) e. X ) ) | 
						
							| 6 |  | ineq1 |  |-  ( x = (/) -> ( x i^i A ) = ( (/) i^i A ) ) | 
						
							| 7 | 6 | eqeq2d |  |-  ( x = (/) -> ( (/) = ( x i^i A ) <-> (/) = ( (/) i^i A ) ) ) | 
						
							| 8 | 5 7 | anbi12d |  |-  ( x = (/) -> ( ( x e. X /\ (/) = ( x i^i A ) ) <-> ( (/) e. X /\ (/) = ( (/) i^i A ) ) ) ) | 
						
							| 9 | 4 8 | spcev |  |-  ( ( (/) e. X /\ (/) = ( (/) i^i A ) ) -> E. x ( x e. X /\ (/) = ( x i^i A ) ) ) | 
						
							| 10 | 3 9 | mpan2 |  |-  ( (/) e. X -> E. x ( x e. X /\ (/) = ( x i^i A ) ) ) | 
						
							| 11 |  | df-rex |  |-  ( E. x e. X (/) = ( x i^i A ) <-> E. x ( x e. X /\ (/) = ( x i^i A ) ) ) | 
						
							| 12 | 10 11 | sylibr |  |-  ( (/) e. X -> E. x e. X (/) = ( x i^i A ) ) | 
						
							| 13 |  | elrest |  |-  ( ( X e. V /\ A e. W ) -> ( (/) e. ( X |`t A ) <-> E. x e. X (/) = ( x i^i A ) ) ) | 
						
							| 14 | 12 13 | imbitrrid |  |-  ( ( X e. V /\ A e. W ) -> ( (/) e. X -> (/) e. ( X |`t A ) ) ) |