Metamath Proof Explorer


Theorem bj-rest0

Description: An elementwise intersection on a family containing the empty set contains the empty set. (Contributed by BJ, 27-Apr-2021)

Ref Expression
Assertion bj-rest0 XVAWXX𝑡A

Proof

Step Hyp Ref Expression
1 in0 A=
2 incom A=A
3 1 2 eqtr3i =A
4 0ex V
5 eleq1 x=xXX
6 ineq1 x=xA=A
7 6 eqeq2d x==xA=A
8 5 7 anbi12d x=xX=xAX=A
9 4 8 spcev X=AxxX=xA
10 3 9 mpan2 XxxX=xA
11 df-rex xX=xAxxX=xA
12 10 11 sylibr XxX=xA
13 elrest XVAWX𝑡AxX=xA
14 12 13 imbitrrid XVAWXX𝑡A