Metamath Proof Explorer


Theorem bj-rest0

Description: An elementwise intersection on a family containing the empty set contains the empty set. (Contributed by BJ, 27-Apr-2021)

Ref Expression
Assertion bj-rest0 ( ( 𝑋𝑉𝐴𝑊 ) → ( ∅ ∈ 𝑋 → ∅ ∈ ( 𝑋t 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 in0 ( 𝐴 ∩ ∅ ) = ∅
2 incom ( 𝐴 ∩ ∅ ) = ( ∅ ∩ 𝐴 )
3 1 2 eqtr3i ∅ = ( ∅ ∩ 𝐴 )
4 0ex ∅ ∈ V
5 eleq1 ( 𝑥 = ∅ → ( 𝑥𝑋 ↔ ∅ ∈ 𝑋 ) )
6 ineq1 ( 𝑥 = ∅ → ( 𝑥𝐴 ) = ( ∅ ∩ 𝐴 ) )
7 6 eqeq2d ( 𝑥 = ∅ → ( ∅ = ( 𝑥𝐴 ) ↔ ∅ = ( ∅ ∩ 𝐴 ) ) )
8 5 7 anbi12d ( 𝑥 = ∅ → ( ( 𝑥𝑋 ∧ ∅ = ( 𝑥𝐴 ) ) ↔ ( ∅ ∈ 𝑋 ∧ ∅ = ( ∅ ∩ 𝐴 ) ) ) )
9 4 8 spcev ( ( ∅ ∈ 𝑋 ∧ ∅ = ( ∅ ∩ 𝐴 ) ) → ∃ 𝑥 ( 𝑥𝑋 ∧ ∅ = ( 𝑥𝐴 ) ) )
10 3 9 mpan2 ( ∅ ∈ 𝑋 → ∃ 𝑥 ( 𝑥𝑋 ∧ ∅ = ( 𝑥𝐴 ) ) )
11 df-rex ( ∃ 𝑥𝑋 ∅ = ( 𝑥𝐴 ) ↔ ∃ 𝑥 ( 𝑥𝑋 ∧ ∅ = ( 𝑥𝐴 ) ) )
12 10 11 sylibr ( ∅ ∈ 𝑋 → ∃ 𝑥𝑋 ∅ = ( 𝑥𝐴 ) )
13 elrest ( ( 𝑋𝑉𝐴𝑊 ) → ( ∅ ∈ ( 𝑋t 𝐴 ) ↔ ∃ 𝑥𝑋 ∅ = ( 𝑥𝐴 ) ) )
14 12 13 syl5ibr ( ( 𝑋𝑉𝐴𝑊 ) → ( ∅ ∈ 𝑋 → ∅ ∈ ( 𝑋t 𝐴 ) ) )