| Step | Hyp | Ref | Expression | 
						
							| 1 |  | in0 | ⊢ ( 𝐴  ∩  ∅ )  =  ∅ | 
						
							| 2 |  | incom | ⊢ ( 𝐴  ∩  ∅ )  =  ( ∅  ∩  𝐴 ) | 
						
							| 3 | 1 2 | eqtr3i | ⊢ ∅  =  ( ∅  ∩  𝐴 ) | 
						
							| 4 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 5 |  | eleq1 | ⊢ ( 𝑥  =  ∅  →  ( 𝑥  ∈  𝑋  ↔  ∅  ∈  𝑋 ) ) | 
						
							| 6 |  | ineq1 | ⊢ ( 𝑥  =  ∅  →  ( 𝑥  ∩  𝐴 )  =  ( ∅  ∩  𝐴 ) ) | 
						
							| 7 | 6 | eqeq2d | ⊢ ( 𝑥  =  ∅  →  ( ∅  =  ( 𝑥  ∩  𝐴 )  ↔  ∅  =  ( ∅  ∩  𝐴 ) ) ) | 
						
							| 8 | 5 7 | anbi12d | ⊢ ( 𝑥  =  ∅  →  ( ( 𝑥  ∈  𝑋  ∧  ∅  =  ( 𝑥  ∩  𝐴 ) )  ↔  ( ∅  ∈  𝑋  ∧  ∅  =  ( ∅  ∩  𝐴 ) ) ) ) | 
						
							| 9 | 4 8 | spcev | ⊢ ( ( ∅  ∈  𝑋  ∧  ∅  =  ( ∅  ∩  𝐴 ) )  →  ∃ 𝑥 ( 𝑥  ∈  𝑋  ∧  ∅  =  ( 𝑥  ∩  𝐴 ) ) ) | 
						
							| 10 | 3 9 | mpan2 | ⊢ ( ∅  ∈  𝑋  →  ∃ 𝑥 ( 𝑥  ∈  𝑋  ∧  ∅  =  ( 𝑥  ∩  𝐴 ) ) ) | 
						
							| 11 |  | df-rex | ⊢ ( ∃ 𝑥  ∈  𝑋 ∅  =  ( 𝑥  ∩  𝐴 )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑋  ∧  ∅  =  ( 𝑥  ∩  𝐴 ) ) ) | 
						
							| 12 | 10 11 | sylibr | ⊢ ( ∅  ∈  𝑋  →  ∃ 𝑥  ∈  𝑋 ∅  =  ( 𝑥  ∩  𝐴 ) ) | 
						
							| 13 |  | elrest | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑊 )  →  ( ∅  ∈  ( 𝑋  ↾t  𝐴 )  ↔  ∃ 𝑥  ∈  𝑋 ∅  =  ( 𝑥  ∩  𝐴 ) ) ) | 
						
							| 14 | 12 13 | imbitrrid | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑊 )  →  ( ∅  ∈  𝑋  →  ∅  ∈  ( 𝑋  ↾t  𝐴 ) ) ) |