| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zfreg |  |-  ( ( A e. V /\ A =/= (/) ) -> E. x e. A ( x i^i A ) = (/) ) | 
						
							| 2 |  | eqcom |  |-  ( ( x i^i A ) = (/) <-> (/) = ( x i^i A ) ) | 
						
							| 3 | 2 | rexbii |  |-  ( E. x e. A ( x i^i A ) = (/) <-> E. x e. A (/) = ( x i^i A ) ) | 
						
							| 4 | 1 3 | sylib |  |-  ( ( A e. V /\ A =/= (/) ) -> E. x e. A (/) = ( x i^i A ) ) | 
						
							| 5 |  | simpl |  |-  ( ( A e. V /\ A =/= (/) ) -> A e. V ) | 
						
							| 6 |  | elrest |  |-  ( ( A e. V /\ A e. V ) -> ( (/) e. ( A |`t A ) <-> E. x e. A (/) = ( x i^i A ) ) ) | 
						
							| 7 | 5 6 | syldan |  |-  ( ( A e. V /\ A =/= (/) ) -> ( (/) e. ( A |`t A ) <-> E. x e. A (/) = ( x i^i A ) ) ) | 
						
							| 8 | 4 7 | mpbird |  |-  ( ( A e. V /\ A =/= (/) ) -> (/) e. ( A |`t A ) ) |