Metamath Proof Explorer


Theorem bj-restreg

Description: A reformulation of the axiom of regularity using elementwise intersection. (RK: might have to be placed later since theorems in this section are to be moved early (in the section related to the algebra of sets).) (Contributed by BJ, 27-Apr-2021)

Ref Expression
Assertion bj-restreg
|- ( ( A e. V /\ A =/= (/) ) -> (/) e. ( A |`t A ) )

Proof

Step Hyp Ref Expression
1 zfreg
 |-  ( ( A e. V /\ A =/= (/) ) -> E. x e. A ( x i^i A ) = (/) )
2 eqcom
 |-  ( ( x i^i A ) = (/) <-> (/) = ( x i^i A ) )
3 2 rexbii
 |-  ( E. x e. A ( x i^i A ) = (/) <-> E. x e. A (/) = ( x i^i A ) )
4 1 3 sylib
 |-  ( ( A e. V /\ A =/= (/) ) -> E. x e. A (/) = ( x i^i A ) )
5 simpl
 |-  ( ( A e. V /\ A =/= (/) ) -> A e. V )
6 elrest
 |-  ( ( A e. V /\ A e. V ) -> ( (/) e. ( A |`t A ) <-> E. x e. A (/) = ( x i^i A ) ) )
7 5 6 syldan
 |-  ( ( A e. V /\ A =/= (/) ) -> ( (/) e. ( A |`t A ) <-> E. x e. A (/) = ( x i^i A ) ) )
8 4 7 mpbird
 |-  ( ( A e. V /\ A =/= (/) ) -> (/) e. ( A |`t A ) )