Step |
Hyp |
Ref |
Expression |
1 |
|
zfreg |
|- ( ( A e. V /\ A =/= (/) ) -> E. x e. A ( x i^i A ) = (/) ) |
2 |
|
eqcom |
|- ( ( x i^i A ) = (/) <-> (/) = ( x i^i A ) ) |
3 |
2
|
rexbii |
|- ( E. x e. A ( x i^i A ) = (/) <-> E. x e. A (/) = ( x i^i A ) ) |
4 |
1 3
|
sylib |
|- ( ( A e. V /\ A =/= (/) ) -> E. x e. A (/) = ( x i^i A ) ) |
5 |
|
simpl |
|- ( ( A e. V /\ A =/= (/) ) -> A e. V ) |
6 |
|
elrest |
|- ( ( A e. V /\ A e. V ) -> ( (/) e. ( A |`t A ) <-> E. x e. A (/) = ( x i^i A ) ) ) |
7 |
5 6
|
syldan |
|- ( ( A e. V /\ A =/= (/) ) -> ( (/) e. ( A |`t A ) <-> E. x e. A (/) = ( x i^i A ) ) ) |
8 |
4 7
|
mpbird |
|- ( ( A e. V /\ A =/= (/) ) -> (/) e. ( A |`t A ) ) |