Description: An instance of ax-11 proved without it. The converse may not be provable without ax-11 (since using alcomiw would require a DV on ph , x , which defeats the purpose). (Contributed by BJ, 22-Dec-2020) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-ssblem2 | |- ( A. x A. y ( y = t -> ( x = y -> ph ) ) -> A. y A. x ( y = t -> ( x = y -> ph ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equequ1 | |- ( y = z -> ( y = t <-> z = t ) ) |
|
2 | equequ2 | |- ( y = z -> ( x = y <-> x = z ) ) |
|
3 | 2 | imbi1d | |- ( y = z -> ( ( x = y -> ph ) <-> ( x = z -> ph ) ) ) |
4 | 1 3 | imbi12d | |- ( y = z -> ( ( y = t -> ( x = y -> ph ) ) <-> ( z = t -> ( x = z -> ph ) ) ) ) |
5 | 4 | alcomiw | |- ( A. x A. y ( y = t -> ( x = y -> ph ) ) -> A. y A. x ( y = t -> ( x = y -> ph ) ) ) |