Metamath Proof Explorer


Theorem bj-subcom

Description: A consequence of commutativity of multiplication. (Contributed by BJ, 6-Jun-2019)

Ref Expression
Hypotheses bj-subcom.a
|- ( ph -> A e. CC )
bj-subcom.b
|- ( ph -> B e. CC )
Assertion bj-subcom
|- ( ph -> ( ( A x. B ) - ( B x. A ) ) = 0 )

Proof

Step Hyp Ref Expression
1 bj-subcom.a
 |-  ( ph -> A e. CC )
2 bj-subcom.b
 |-  ( ph -> B e. CC )
3 1 2 mulcld
 |-  ( ph -> ( A x. B ) e. CC )
4 1 2 mulcomd
 |-  ( ph -> ( A x. B ) = ( B x. A ) )
5 3 4 subeq0bd
 |-  ( ph -> ( ( A x. B ) - ( B x. A ) ) = 0 )