Description: A consequence of commutativity of multiplication. (Contributed by BJ, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bj-subcom.a | |- ( ph -> A e. CC ) | |
| bj-subcom.b | |- ( ph -> B e. CC ) | ||
| Assertion | bj-subcom | |- ( ph -> ( ( A x. B ) - ( B x. A ) ) = 0 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bj-subcom.a | |- ( ph -> A e. CC ) | |
| 2 | bj-subcom.b | |- ( ph -> B e. CC ) | |
| 3 | 1 2 | mulcld | |- ( ph -> ( A x. B ) e. CC ) | 
| 4 | 1 2 | mulcomd | |- ( ph -> ( A x. B ) = ( B x. A ) ) | 
| 5 | 3 4 | subeq0bd | |- ( ph -> ( ( A x. B ) - ( B x. A ) ) = 0 ) |