Description: A consequence of commutativity of multiplication. (Contributed by BJ, 6-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bj-subcom.a | |- ( ph -> A e. CC ) |
|
bj-subcom.b | |- ( ph -> B e. CC ) |
||
Assertion | bj-subcom | |- ( ph -> ( ( A x. B ) - ( B x. A ) ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-subcom.a | |- ( ph -> A e. CC ) |
|
2 | bj-subcom.b | |- ( ph -> B e. CC ) |
|
3 | 1 2 | mulcld | |- ( ph -> ( A x. B ) e. CC ) |
4 | 1 2 | mulcomd | |- ( ph -> ( A x. B ) = ( B x. A ) ) |
5 | 3 4 | subeq0bd | |- ( ph -> ( ( A x. B ) - ( B x. A ) ) = 0 ) |