Metamath Proof Explorer


Theorem bj-subcom

Description: A consequence of commutativity of multiplication. (Contributed by BJ, 6-Jun-2019)

Ref Expression
Hypotheses bj-subcom.a φ A
bj-subcom.b φ B
Assertion bj-subcom φ A B B A = 0

Proof

Step Hyp Ref Expression
1 bj-subcom.a φ A
2 bj-subcom.b φ B
3 1 2 mulcld φ A B
4 1 2 mulcomd φ A B = B A
5 3 4 subeq0bd φ A B B A = 0