Metamath Proof Explorer
		
		
		
		Description:  A consequence of commutativity of multiplication.  (Contributed by BJ, 6-Jun-2019)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | bj-subcom.a | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
					
						|  |  | bj-subcom.b | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
				
					|  | Assertion | bj-subcom | ⊢  ( 𝜑  →  ( ( 𝐴  ·  𝐵 )  −  ( 𝐵  ·  𝐴 ) )  =  0 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-subcom.a | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | bj-subcom.b | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 3 | 1 2 | mulcld | ⊢ ( 𝜑  →  ( 𝐴  ·  𝐵 )  ∈  ℂ ) | 
						
							| 4 | 1 2 | mulcomd | ⊢ ( 𝜑  →  ( 𝐴  ·  𝐵 )  =  ( 𝐵  ·  𝐴 ) ) | 
						
							| 5 | 3 4 | subeq0bd | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐵 )  −  ( 𝐵  ·  𝐴 ) )  =  0 ) |