Metamath Proof Explorer


Theorem blfval

Description: The value of the ball function. (Contributed by NM, 30-Aug-2006) (Revised by Mario Carneiro, 11-Nov-2013) (Proof shortened by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Assertion blfval
|- ( D e. ( *Met ` X ) -> ( ball ` D ) = ( x e. X , r e. RR* |-> { y e. X | ( x D y ) < r } ) )

Proof

Step Hyp Ref Expression
1 xmetpsmet
 |-  ( D e. ( *Met ` X ) -> D e. ( PsMet ` X ) )
2 blfvalps
 |-  ( D e. ( PsMet ` X ) -> ( ball ` D ) = ( x e. X , r e. RR* |-> { y e. X | ( x D y ) < r } ) )
3 1 2 syl
 |-  ( D e. ( *Met ` X ) -> ( ball ` D ) = ( x e. X , r e. RR* |-> { y e. X | ( x D y ) < r } ) )