Metamath Proof Explorer


Theorem blfval

Description: The value of the ball function. (Contributed by NM, 30-Aug-2006) (Revised by Mario Carneiro, 11-Nov-2013) (Proof shortened by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Assertion blfval ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ball ‘ 𝐷 ) = ( 𝑥𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑦𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) )

Proof

Step Hyp Ref Expression
1 xmetpsmet ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) )
2 blfvalps ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ball ‘ 𝐷 ) = ( 𝑥𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑦𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) )
3 1 2 syl ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ball ‘ 𝐷 ) = ( 𝑥𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑦𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) )