| Step | Hyp | Ref | Expression | 
						
							| 1 |  | blfvalps | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ( ball ‘ 𝐷 )  =  ( 𝑦  ∈  𝑋 ,  𝑟  ∈  ℝ*  ↦  { 𝑥  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑥 )  <  𝑟 } ) ) | 
						
							| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝑅  ∈  ℝ* )  →  ( ball ‘ 𝐷 )  =  ( 𝑦  ∈  𝑋 ,  𝑟  ∈  ℝ*  ↦  { 𝑥  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑥 )  <  𝑟 } ) ) | 
						
							| 3 |  | simprl | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝑅  ∈  ℝ* )  ∧  ( 𝑦  =  𝑃  ∧  𝑟  =  𝑅 ) )  →  𝑦  =  𝑃 ) | 
						
							| 4 | 3 | oveq1d | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝑅  ∈  ℝ* )  ∧  ( 𝑦  =  𝑃  ∧  𝑟  =  𝑅 ) )  →  ( 𝑦 𝐷 𝑥 )  =  ( 𝑃 𝐷 𝑥 ) ) | 
						
							| 5 |  | simprr | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝑅  ∈  ℝ* )  ∧  ( 𝑦  =  𝑃  ∧  𝑟  =  𝑅 ) )  →  𝑟  =  𝑅 ) | 
						
							| 6 | 4 5 | breq12d | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝑅  ∈  ℝ* )  ∧  ( 𝑦  =  𝑃  ∧  𝑟  =  𝑅 ) )  →  ( ( 𝑦 𝐷 𝑥 )  <  𝑟  ↔  ( 𝑃 𝐷 𝑥 )  <  𝑅 ) ) | 
						
							| 7 | 6 | rabbidv | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝑅  ∈  ℝ* )  ∧  ( 𝑦  =  𝑃  ∧  𝑟  =  𝑅 ) )  →  { 𝑥  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑥 )  <  𝑟 }  =  { 𝑥  ∈  𝑋  ∣  ( 𝑃 𝐷 𝑥 )  <  𝑅 } ) | 
						
							| 8 |  | simp2 | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝑅  ∈  ℝ* )  →  𝑃  ∈  𝑋 ) | 
						
							| 9 |  | simp3 | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝑅  ∈  ℝ* )  →  𝑅  ∈  ℝ* ) | 
						
							| 10 |  | elfvdm | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  𝑋  ∈  dom  PsMet ) | 
						
							| 11 | 10 | 3ad2ant1 | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝑅  ∈  ℝ* )  →  𝑋  ∈  dom  PsMet ) | 
						
							| 12 |  | rabexg | ⊢ ( 𝑋  ∈  dom  PsMet  →  { 𝑥  ∈  𝑋  ∣  ( 𝑃 𝐷 𝑥 )  <  𝑅 }  ∈  V ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝑅  ∈  ℝ* )  →  { 𝑥  ∈  𝑋  ∣  ( 𝑃 𝐷 𝑥 )  <  𝑅 }  ∈  V ) | 
						
							| 14 | 2 7 8 9 13 | ovmpod | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝑅  ∈  ℝ* )  →  ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 )  =  { 𝑥  ∈  𝑋  ∣  ( 𝑃 𝐷 𝑥 )  <  𝑅 } ) |