Metamath Proof Explorer


Theorem blvalps

Description: The ball around a point P is the set of all points whose distance from P is less than the ball's radius R . (Contributed by NM, 31-Aug-2006) (Revised by Mario Carneiro, 11-Nov-2013) (Revised by Thierry Arnoux, 11-Mar-2018)

Ref Expression
Assertion blvalps DPsMetXPXR*PballDR=xX|PDx<R

Proof

Step Hyp Ref Expression
1 blfvalps DPsMetXballD=yX,r*xX|yDx<r
2 1 3ad2ant1 DPsMetXPXR*ballD=yX,r*xX|yDx<r
3 simprl DPsMetXPXR*y=Pr=Ry=P
4 3 oveq1d DPsMetXPXR*y=Pr=RyDx=PDx
5 simprr DPsMetXPXR*y=Pr=Rr=R
6 4 5 breq12d DPsMetXPXR*y=Pr=RyDx<rPDx<R
7 6 rabbidv DPsMetXPXR*y=Pr=RxX|yDx<r=xX|PDx<R
8 simp2 DPsMetXPXR*PX
9 simp3 DPsMetXPXR*R*
10 elfvdm DPsMetXXdomPsMet
11 10 3ad2ant1 DPsMetXPXR*XdomPsMet
12 rabexg XdomPsMetxX|PDx<RV
13 11 12 syl DPsMetXPXR*xX|PDx<RV
14 2 7 8 9 13 ovmpod DPsMetXPXR*PballDR=xX|PDx<R