Step |
Hyp |
Ref |
Expression |
1 |
|
df-bl |
⊢ ball = ( 𝑑 ∈ V ↦ ( 𝑥 ∈ dom dom 𝑑 , 𝑟 ∈ ℝ* ↦ { 𝑦 ∈ dom dom 𝑑 ∣ ( 𝑥 𝑑 𝑦 ) < 𝑟 } ) ) |
2 |
|
dmeq |
⊢ ( 𝑑 = 𝐷 → dom 𝑑 = dom 𝐷 ) |
3 |
2
|
dmeqd |
⊢ ( 𝑑 = 𝐷 → dom dom 𝑑 = dom dom 𝐷 ) |
4 |
|
psmetdmdm |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝑋 = dom dom 𝐷 ) |
5 |
4
|
eqcomd |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → dom dom 𝐷 = 𝑋 ) |
6 |
3 5
|
sylan9eqr |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → dom dom 𝑑 = 𝑋 ) |
7 |
|
eqidd |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ℝ* = ℝ* ) |
8 |
|
simpr |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → 𝑑 = 𝐷 ) |
9 |
8
|
oveqd |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( 𝑥 𝑑 𝑦 ) = ( 𝑥 𝐷 𝑦 ) ) |
10 |
9
|
breq1d |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( ( 𝑥 𝑑 𝑦 ) < 𝑟 ↔ ( 𝑥 𝐷 𝑦 ) < 𝑟 ) ) |
11 |
6 10
|
rabeqbidv |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → { 𝑦 ∈ dom dom 𝑑 ∣ ( 𝑥 𝑑 𝑦 ) < 𝑟 } = { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) |
12 |
6 7 11
|
mpoeq123dv |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( 𝑥 ∈ dom dom 𝑑 , 𝑟 ∈ ℝ* ↦ { 𝑦 ∈ dom dom 𝑑 ∣ ( 𝑥 𝑑 𝑦 ) < 𝑟 } ) = ( 𝑥 ∈ 𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) ) |
13 |
|
elex |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝐷 ∈ V ) |
14 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ⊆ 𝑋 |
15 |
|
elfvdm |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝑋 ∈ dom PsMet ) |
16 |
15
|
adantr |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ) → 𝑋 ∈ dom PsMet ) |
17 |
|
elpw2g |
⊢ ( 𝑋 ∈ dom PsMet → ( { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ∈ 𝒫 𝑋 ↔ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ⊆ 𝑋 ) ) |
18 |
16 17
|
syl |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ) → ( { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ∈ 𝒫 𝑋 ↔ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ⊆ 𝑋 ) ) |
19 |
14 18
|
mpbiri |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ) → { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ∈ 𝒫 𝑋 ) |
20 |
19
|
ralrimivva |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑟 ∈ ℝ* { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ∈ 𝒫 𝑋 ) |
21 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) = ( 𝑥 ∈ 𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) |
22 |
21
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑟 ∈ ℝ* { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ∈ 𝒫 𝑋 ↔ ( 𝑥 ∈ 𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) : ( 𝑋 × ℝ* ) ⟶ 𝒫 𝑋 ) |
23 |
20 22
|
sylib |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝑥 ∈ 𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) : ( 𝑋 × ℝ* ) ⟶ 𝒫 𝑋 ) |
24 |
|
xrex |
⊢ ℝ* ∈ V |
25 |
|
xpexg |
⊢ ( ( 𝑋 ∈ dom PsMet ∧ ℝ* ∈ V ) → ( 𝑋 × ℝ* ) ∈ V ) |
26 |
15 24 25
|
sylancl |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝑋 × ℝ* ) ∈ V ) |
27 |
15
|
pwexd |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝒫 𝑋 ∈ V ) |
28 |
|
fex2 |
⊢ ( ( ( 𝑥 ∈ 𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) : ( 𝑋 × ℝ* ) ⟶ 𝒫 𝑋 ∧ ( 𝑋 × ℝ* ) ∈ V ∧ 𝒫 𝑋 ∈ V ) → ( 𝑥 ∈ 𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) ∈ V ) |
29 |
23 26 27 28
|
syl3anc |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝑥 ∈ 𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) ∈ V ) |
30 |
1 12 13 29
|
fvmptd2 |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ball ‘ 𝐷 ) = ( 𝑥 ∈ 𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) ) |