Database
BASIC TOPOLOGY
Metric spaces
Metric space balls
blfval
Metamath Proof Explorer
Description: The value of the ball function. (Contributed by NM , 30-Aug-2006)
(Revised by Mario Carneiro , 11-Nov-2013) (Proof shortened by Thierry
Arnoux , 11-Feb-2018)
Ref
Expression
Assertion
blfval
⊢ D ∈ ∞Met ⁡ X → ball ⁡ D = x ∈ X , r ∈ ℝ * ⟼ y ∈ X | x D y < r
Proof
Step
Hyp
Ref
Expression
1
xmetpsmet
⊢ D ∈ ∞Met ⁡ X → D ∈ PsMet ⁡ X
2
blfvalps
⊢ D ∈ PsMet ⁡ X → ball ⁡ D = x ∈ X , r ∈ ℝ * ⟼ y ∈ X | x D y < r
3
1 2
syl
⊢ D ∈ ∞Met ⁡ X → ball ⁡ D = x ∈ X , r ∈ ℝ * ⟼ y ∈ X | x D y < r