| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mopni.1 |
|- J = ( MetOpen ` D ) |
| 2 |
1
|
mopntop |
|- ( D e. ( *Met ` X ) -> J e. Top ) |
| 3 |
2
|
3ad2ant1 |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR+ ) -> J e. Top ) |
| 4 |
|
rpxr |
|- ( R e. RR+ -> R e. RR* ) |
| 5 |
1
|
blopn |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( P ( ball ` D ) R ) e. J ) |
| 6 |
4 5
|
syl3an3 |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR+ ) -> ( P ( ball ` D ) R ) e. J ) |
| 7 |
|
blcntr |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR+ ) -> P e. ( P ( ball ` D ) R ) ) |
| 8 |
|
opnneip |
|- ( ( J e. Top /\ ( P ( ball ` D ) R ) e. J /\ P e. ( P ( ball ` D ) R ) ) -> ( P ( ball ` D ) R ) e. ( ( nei ` J ) ` { P } ) ) |
| 9 |
3 6 7 8
|
syl3anc |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR+ ) -> ( P ( ball ` D ) R ) e. ( ( nei ` J ) ` { P } ) ) |