Metamath Proof Explorer


Theorem blnei

Description: A ball around a point is a neighborhood of the point. (Contributed by NM, 8-Nov-2007) (Revised by Mario Carneiro, 24-Aug-2015)

Ref Expression
Hypothesis mopni.1 𝐽 = ( MetOpen ‘ 𝐷 )
Assertion blnei ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋𝑅 ∈ ℝ+ ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) )

Proof

Step Hyp Ref Expression
1 mopni.1 𝐽 = ( MetOpen ‘ 𝐷 )
2 1 mopntop ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top )
3 2 3ad2ant1 ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋𝑅 ∈ ℝ+ ) → 𝐽 ∈ Top )
4 rpxr ( 𝑅 ∈ ℝ+𝑅 ∈ ℝ* )
5 1 blopn ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∈ 𝐽 )
6 4 5 syl3an3 ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋𝑅 ∈ ℝ+ ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∈ 𝐽 )
7 blcntr ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋𝑅 ∈ ℝ+ ) → 𝑃 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) )
8 opnneip ( ( 𝐽 ∈ Top ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∈ 𝐽𝑃 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) )
9 3 6 7 8 syl3anc ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋𝑅 ∈ ℝ+ ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) )