| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mopni.1 |
|- J = ( MetOpen ` D ) |
| 2 |
|
ineq1 |
|- ( x = ( P ( ball ` D ) R ) -> ( x i^i ( S \ { P } ) ) = ( ( P ( ball ` D ) R ) i^i ( S \ { P } ) ) ) |
| 3 |
2
|
neeq1d |
|- ( x = ( P ( ball ` D ) R ) -> ( ( x i^i ( S \ { P } ) ) =/= (/) <-> ( ( P ( ball ` D ) R ) i^i ( S \ { P } ) ) =/= (/) ) ) |
| 4 |
|
simpl3 |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ P e. ( ( limPt ` J ) ` S ) ) /\ R e. RR+ ) -> P e. ( ( limPt ` J ) ` S ) ) |
| 5 |
|
simpl1 |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ P e. ( ( limPt ` J ) ` S ) ) /\ R e. RR+ ) -> D e. ( *Met ` X ) ) |
| 6 |
1
|
mopntop |
|- ( D e. ( *Met ` X ) -> J e. Top ) |
| 7 |
5 6
|
syl |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ P e. ( ( limPt ` J ) ` S ) ) /\ R e. RR+ ) -> J e. Top ) |
| 8 |
|
simpl2 |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ P e. ( ( limPt ` J ) ` S ) ) /\ R e. RR+ ) -> S C_ X ) |
| 9 |
1
|
mopnuni |
|- ( D e. ( *Met ` X ) -> X = U. J ) |
| 10 |
5 9
|
syl |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ P e. ( ( limPt ` J ) ` S ) ) /\ R e. RR+ ) -> X = U. J ) |
| 11 |
8 10
|
sseqtrd |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ P e. ( ( limPt ` J ) ` S ) ) /\ R e. RR+ ) -> S C_ U. J ) |
| 12 |
|
eqid |
|- U. J = U. J |
| 13 |
12
|
lpss |
|- ( ( J e. Top /\ S C_ U. J ) -> ( ( limPt ` J ) ` S ) C_ U. J ) |
| 14 |
7 11 13
|
syl2anc |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ P e. ( ( limPt ` J ) ` S ) ) /\ R e. RR+ ) -> ( ( limPt ` J ) ` S ) C_ U. J ) |
| 15 |
14 4
|
sseldd |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ P e. ( ( limPt ` J ) ` S ) ) /\ R e. RR+ ) -> P e. U. J ) |
| 16 |
12
|
islp2 |
|- ( ( J e. Top /\ S C_ U. J /\ P e. U. J ) -> ( P e. ( ( limPt ` J ) ` S ) <-> A. x e. ( ( nei ` J ) ` { P } ) ( x i^i ( S \ { P } ) ) =/= (/) ) ) |
| 17 |
7 11 15 16
|
syl3anc |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ P e. ( ( limPt ` J ) ` S ) ) /\ R e. RR+ ) -> ( P e. ( ( limPt ` J ) ` S ) <-> A. x e. ( ( nei ` J ) ` { P } ) ( x i^i ( S \ { P } ) ) =/= (/) ) ) |
| 18 |
4 17
|
mpbid |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ P e. ( ( limPt ` J ) ` S ) ) /\ R e. RR+ ) -> A. x e. ( ( nei ` J ) ` { P } ) ( x i^i ( S \ { P } ) ) =/= (/) ) |
| 19 |
15 10
|
eleqtrrd |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ P e. ( ( limPt ` J ) ` S ) ) /\ R e. RR+ ) -> P e. X ) |
| 20 |
|
simpr |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ P e. ( ( limPt ` J ) ` S ) ) /\ R e. RR+ ) -> R e. RR+ ) |
| 21 |
1
|
blnei |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR+ ) -> ( P ( ball ` D ) R ) e. ( ( nei ` J ) ` { P } ) ) |
| 22 |
5 19 20 21
|
syl3anc |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ P e. ( ( limPt ` J ) ` S ) ) /\ R e. RR+ ) -> ( P ( ball ` D ) R ) e. ( ( nei ` J ) ` { P } ) ) |
| 23 |
3 18 22
|
rspcdva |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ P e. ( ( limPt ` J ) ` S ) ) /\ R e. RR+ ) -> ( ( P ( ball ` D ) R ) i^i ( S \ { P } ) ) =/= (/) ) |
| 24 |
|
elin |
|- ( x e. ( ( P ( ball ` D ) R ) i^i ( S \ { P } ) ) <-> ( x e. ( P ( ball ` D ) R ) /\ x e. ( S \ { P } ) ) ) |
| 25 |
|
eldifi |
|- ( x e. ( S \ { P } ) -> x e. S ) |
| 26 |
25
|
anim2i |
|- ( ( x e. ( P ( ball ` D ) R ) /\ x e. ( S \ { P } ) ) -> ( x e. ( P ( ball ` D ) R ) /\ x e. S ) ) |
| 27 |
26
|
ancomd |
|- ( ( x e. ( P ( ball ` D ) R ) /\ x e. ( S \ { P } ) ) -> ( x e. S /\ x e. ( P ( ball ` D ) R ) ) ) |
| 28 |
24 27
|
sylbi |
|- ( x e. ( ( P ( ball ` D ) R ) i^i ( S \ { P } ) ) -> ( x e. S /\ x e. ( P ( ball ` D ) R ) ) ) |
| 29 |
28
|
eximi |
|- ( E. x x e. ( ( P ( ball ` D ) R ) i^i ( S \ { P } ) ) -> E. x ( x e. S /\ x e. ( P ( ball ` D ) R ) ) ) |
| 30 |
|
n0 |
|- ( ( ( P ( ball ` D ) R ) i^i ( S \ { P } ) ) =/= (/) <-> E. x x e. ( ( P ( ball ` D ) R ) i^i ( S \ { P } ) ) ) |
| 31 |
|
df-rex |
|- ( E. x e. S x e. ( P ( ball ` D ) R ) <-> E. x ( x e. S /\ x e. ( P ( ball ` D ) R ) ) ) |
| 32 |
29 30 31
|
3imtr4i |
|- ( ( ( P ( ball ` D ) R ) i^i ( S \ { P } ) ) =/= (/) -> E. x e. S x e. ( P ( ball ` D ) R ) ) |
| 33 |
23 32
|
syl |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ P e. ( ( limPt ` J ) ` S ) ) /\ R e. RR+ ) -> E. x e. S x e. ( P ( ball ` D ) R ) ) |