| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1015.1 |
|- ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) ) |
| 2 |
|
bnj1015.2 |
|- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
| 3 |
|
bnj1015.13 |
|- D = ( _om \ { (/) } ) |
| 4 |
|
bnj1015.14 |
|- B = { f | E. n e. D ( f Fn n /\ ph /\ ps ) } |
| 5 |
|
bnj1015.15 |
|- G e. V |
| 6 |
|
bnj1015.16 |
|- J e. V |
| 7 |
6
|
elexi |
|- J e. _V |
| 8 |
|
eleq1 |
|- ( j = J -> ( j e. dom G <-> J e. dom G ) ) |
| 9 |
8
|
anbi2d |
|- ( j = J -> ( ( G e. B /\ j e. dom G ) <-> ( G e. B /\ J e. dom G ) ) ) |
| 10 |
|
fveq2 |
|- ( j = J -> ( G ` j ) = ( G ` J ) ) |
| 11 |
10
|
sseq1d |
|- ( j = J -> ( ( G ` j ) C_ _trCl ( X , A , R ) <-> ( G ` J ) C_ _trCl ( X , A , R ) ) ) |
| 12 |
9 11
|
imbi12d |
|- ( j = J -> ( ( ( G e. B /\ j e. dom G ) -> ( G ` j ) C_ _trCl ( X , A , R ) ) <-> ( ( G e. B /\ J e. dom G ) -> ( G ` J ) C_ _trCl ( X , A , R ) ) ) ) |
| 13 |
5
|
elexi |
|- G e. _V |
| 14 |
|
eleq1 |
|- ( g = G -> ( g e. B <-> G e. B ) ) |
| 15 |
|
dmeq |
|- ( g = G -> dom g = dom G ) |
| 16 |
15
|
eleq2d |
|- ( g = G -> ( j e. dom g <-> j e. dom G ) ) |
| 17 |
14 16
|
anbi12d |
|- ( g = G -> ( ( g e. B /\ j e. dom g ) <-> ( G e. B /\ j e. dom G ) ) ) |
| 18 |
|
fveq1 |
|- ( g = G -> ( g ` j ) = ( G ` j ) ) |
| 19 |
18
|
sseq1d |
|- ( g = G -> ( ( g ` j ) C_ _trCl ( X , A , R ) <-> ( G ` j ) C_ _trCl ( X , A , R ) ) ) |
| 20 |
17 19
|
imbi12d |
|- ( g = G -> ( ( ( g e. B /\ j e. dom g ) -> ( g ` j ) C_ _trCl ( X , A , R ) ) <-> ( ( G e. B /\ j e. dom G ) -> ( G ` j ) C_ _trCl ( X , A , R ) ) ) ) |
| 21 |
1 2 3 4
|
bnj1014 |
|- ( ( g e. B /\ j e. dom g ) -> ( g ` j ) C_ _trCl ( X , A , R ) ) |
| 22 |
13 20 21
|
vtocl |
|- ( ( G e. B /\ j e. dom G ) -> ( G ` j ) C_ _trCl ( X , A , R ) ) |
| 23 |
7 12 22
|
vtocl |
|- ( ( G e. B /\ J e. dom G ) -> ( G ` J ) C_ _trCl ( X , A , R ) ) |