Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bnj115.1 | |- ( et <-> A. n e. D ( ta -> th ) ) |
|
Assertion | bnj115 | |- ( et <-> A. n ( ( n e. D /\ ta ) -> th ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj115.1 | |- ( et <-> A. n e. D ( ta -> th ) ) |
|
2 | df-ral | |- ( A. n e. D ( ta -> th ) <-> A. n ( n e. D -> ( ta -> th ) ) ) |
|
3 | impexp | |- ( ( ( n e. D /\ ta ) -> th ) <-> ( n e. D -> ( ta -> th ) ) ) |
|
4 | 3 | bicomi | |- ( ( n e. D -> ( ta -> th ) ) <-> ( ( n e. D /\ ta ) -> th ) ) |
5 | 4 | albii | |- ( A. n ( n e. D -> ( ta -> th ) ) <-> A. n ( ( n e. D /\ ta ) -> th ) ) |
6 | 1 2 5 | 3bitri | |- ( et <-> A. n ( ( n e. D /\ ta ) -> th ) ) |