Metamath Proof Explorer


Theorem bnj115

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj115.1
|- ( et <-> A. n e. D ( ta -> th ) )
Assertion bnj115
|- ( et <-> A. n ( ( n e. D /\ ta ) -> th ) )

Proof

Step Hyp Ref Expression
1 bnj115.1
 |-  ( et <-> A. n e. D ( ta -> th ) )
2 df-ral
 |-  ( A. n e. D ( ta -> th ) <-> A. n ( n e. D -> ( ta -> th ) ) )
3 impexp
 |-  ( ( ( n e. D /\ ta ) -> th ) <-> ( n e. D -> ( ta -> th ) ) )
4 3 bicomi
 |-  ( ( n e. D -> ( ta -> th ) ) <-> ( ( n e. D /\ ta ) -> th ) )
5 4 albii
 |-  ( A. n ( n e. D -> ( ta -> th ) ) <-> A. n ( ( n e. D /\ ta ) -> th ) )
6 1 2 5 3bitri
 |-  ( et <-> A. n ( ( n e. D /\ ta ) -> th ) )