| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1371.1 |
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
| 2 |
|
bnj1371.2 |
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
| 3 |
|
bnj1371.3 |
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
| 4 |
|
bnj1371.4 |
|- ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) ) |
| 5 |
|
bnj1371.5 |
|- D = { x e. A | -. E. f ta } |
| 6 |
|
bnj1371.6 |
|- ( ps <-> ( R _FrSe A /\ D =/= (/) ) ) |
| 7 |
|
bnj1371.7 |
|- ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) ) |
| 8 |
|
bnj1371.8 |
|- ( ta' <-> [. y / x ]. ta ) |
| 9 |
|
bnj1371.9 |
|- H = { f | E. y e. _pred ( x , A , R ) ta' } |
| 10 |
|
bnj1371.10 |
|- P = U. H |
| 11 |
|
bnj1371.11 |
|- ( ta' <-> ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) |
| 12 |
9
|
bnj1436 |
|- ( f e. H -> E. y e. _pred ( x , A , R ) ta' ) |
| 13 |
|
rexex |
|- ( E. y e. _pred ( x , A , R ) ta' -> E. y ta' ) |
| 14 |
12 13
|
syl |
|- ( f e. H -> E. y ta' ) |
| 15 |
11
|
exbii |
|- ( E. y ta' <-> E. y ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) |
| 16 |
14 15
|
sylib |
|- ( f e. H -> E. y ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) |
| 17 |
|
exsimpl |
|- ( E. y ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) -> E. y f e. C ) |
| 18 |
16 17
|
syl |
|- ( f e. H -> E. y f e. C ) |
| 19 |
3
|
eqabri |
|- ( f e. C <-> E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) ) |
| 20 |
19
|
bnj1238 |
|- ( f e. C -> E. d e. B f Fn d ) |
| 21 |
|
fnfun |
|- ( f Fn d -> Fun f ) |
| 22 |
20 21
|
bnj31 |
|- ( f e. C -> E. d e. B Fun f ) |
| 23 |
22
|
bnj1265 |
|- ( f e. C -> Fun f ) |
| 24 |
18 23
|
bnj593 |
|- ( f e. H -> E. y Fun f ) |
| 25 |
24
|
bnj937 |
|- ( f e. H -> Fun f ) |