Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1371.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
2 |
|
bnj1371.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
3 |
|
bnj1371.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
4 |
|
bnj1371.4 |
⊢ ( 𝜏 ↔ ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) ) |
5 |
|
bnj1371.5 |
⊢ 𝐷 = { 𝑥 ∈ 𝐴 ∣ ¬ ∃ 𝑓 𝜏 } |
6 |
|
bnj1371.6 |
⊢ ( 𝜓 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅ ) ) |
7 |
|
bnj1371.7 |
⊢ ( 𝜒 ↔ ( 𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀ 𝑦 ∈ 𝐷 ¬ 𝑦 𝑅 𝑥 ) ) |
8 |
|
bnj1371.8 |
⊢ ( 𝜏′ ↔ [ 𝑦 / 𝑥 ] 𝜏 ) |
9 |
|
bnj1371.9 |
⊢ 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ } |
10 |
|
bnj1371.10 |
⊢ 𝑃 = ∪ 𝐻 |
11 |
|
bnj1371.11 |
⊢ ( 𝜏′ ↔ ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
12 |
9
|
bnj1436 |
⊢ ( 𝑓 ∈ 𝐻 → ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ ) |
13 |
|
rexex |
⊢ ( ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ → ∃ 𝑦 𝜏′ ) |
14 |
12 13
|
syl |
⊢ ( 𝑓 ∈ 𝐻 → ∃ 𝑦 𝜏′ ) |
15 |
11
|
exbii |
⊢ ( ∃ 𝑦 𝜏′ ↔ ∃ 𝑦 ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
16 |
14 15
|
sylib |
⊢ ( 𝑓 ∈ 𝐻 → ∃ 𝑦 ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
17 |
|
exsimpl |
⊢ ( ∃ 𝑦 ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) → ∃ 𝑦 𝑓 ∈ 𝐶 ) |
18 |
16 17
|
syl |
⊢ ( 𝑓 ∈ 𝐻 → ∃ 𝑦 𝑓 ∈ 𝐶 ) |
19 |
3
|
abeq2i |
⊢ ( 𝑓 ∈ 𝐶 ↔ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ) |
20 |
19
|
bnj1238 |
⊢ ( 𝑓 ∈ 𝐶 → ∃ 𝑑 ∈ 𝐵 𝑓 Fn 𝑑 ) |
21 |
|
fnfun |
⊢ ( 𝑓 Fn 𝑑 → Fun 𝑓 ) |
22 |
20 21
|
bnj31 |
⊢ ( 𝑓 ∈ 𝐶 → ∃ 𝑑 ∈ 𝐵 Fun 𝑓 ) |
23 |
22
|
bnj1265 |
⊢ ( 𝑓 ∈ 𝐶 → Fun 𝑓 ) |
24 |
18 23
|
bnj593 |
⊢ ( 𝑓 ∈ 𝐻 → ∃ 𝑦 Fun 𝑓 ) |
25 |
24
|
bnj937 |
⊢ ( 𝑓 ∈ 𝐻 → Fun 𝑓 ) |