| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1534.1 |
|- D = { x e. A | ( F ` x ) =/= ( H ` x ) } |
| 2 |
|
bnj1534.2 |
|- ( w e. F -> A. x w e. F ) |
| 3 |
|
nfcv |
|- F/_ x A |
| 4 |
|
nfcv |
|- F/_ z A |
| 5 |
|
nfv |
|- F/ z ( F ` x ) =/= ( H ` x ) |
| 6 |
2
|
nfcii |
|- F/_ x F |
| 7 |
|
nfcv |
|- F/_ x z |
| 8 |
6 7
|
nffv |
|- F/_ x ( F ` z ) |
| 9 |
|
nfcv |
|- F/_ x ( H ` z ) |
| 10 |
8 9
|
nfne |
|- F/ x ( F ` z ) =/= ( H ` z ) |
| 11 |
|
fveq2 |
|- ( x = z -> ( F ` x ) = ( F ` z ) ) |
| 12 |
|
fveq2 |
|- ( x = z -> ( H ` x ) = ( H ` z ) ) |
| 13 |
11 12
|
neeq12d |
|- ( x = z -> ( ( F ` x ) =/= ( H ` x ) <-> ( F ` z ) =/= ( H ` z ) ) ) |
| 14 |
3 4 5 10 13
|
cbvrabw |
|- { x e. A | ( F ` x ) =/= ( H ` x ) } = { z e. A | ( F ` z ) =/= ( H ` z ) } |
| 15 |
1 14
|
eqtri |
|- D = { z e. A | ( F ` z ) =/= ( H ` z ) } |