Metamath Proof Explorer


Theorem bnj1534

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1534.1 D = x A | F x H x
bnj1534.2 w F x w F
Assertion bnj1534 D = z A | F z H z

Proof

Step Hyp Ref Expression
1 bnj1534.1 D = x A | F x H x
2 bnj1534.2 w F x w F
3 nfcv _ x A
4 nfcv _ z A
5 nfv z F x H x
6 2 nfcii _ x F
7 nfcv _ x z
8 6 7 nffv _ x F z
9 nfcv _ x H z
10 8 9 nfne x F z H z
11 fveq2 x = z F x = F z
12 fveq2 x = z H x = H z
13 11 12 neeq12d x = z F x H x F z H z
14 3 4 5 10 13 cbvrabw x A | F x H x = z A | F z H z
15 1 14 eqtri D = z A | F z H z