| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj154.1 |
|- ( ph1 <-> [. g / f ]. ph' ) |
| 2 |
|
bnj154.2 |
|- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
| 3 |
2
|
sbcbii |
|- ( [. g / f ]. ph' <-> [. g / f ]. ( f ` (/) ) = _pred ( x , A , R ) ) |
| 4 |
|
vex |
|- g e. _V |
| 5 |
|
fveq1 |
|- ( f = g -> ( f ` (/) ) = ( g ` (/) ) ) |
| 6 |
5
|
eqeq1d |
|- ( f = g -> ( ( f ` (/) ) = _pred ( x , A , R ) <-> ( g ` (/) ) = _pred ( x , A , R ) ) ) |
| 7 |
4 6
|
sbcie |
|- ( [. g / f ]. ( f ` (/) ) = _pred ( x , A , R ) <-> ( g ` (/) ) = _pred ( x , A , R ) ) |
| 8 |
1 3 7
|
3bitri |
|- ( ph1 <-> ( g ` (/) ) = _pred ( x , A , R ) ) |