| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj518.1 |
|- ( ph <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
| 2 |
|
bnj518.2 |
|- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
| 3 |
|
bnj518.3 |
|- ( ta <-> ( ph /\ ps /\ n e. _om /\ p e. n ) ) |
| 4 |
|
bnj334 |
|- ( ( ph /\ ps /\ n e. _om /\ p e. n ) <-> ( n e. _om /\ ph /\ ps /\ p e. n ) ) |
| 5 |
3 4
|
bitri |
|- ( ta <-> ( n e. _om /\ ph /\ ps /\ p e. n ) ) |
| 6 |
|
df-bnj17 |
|- ( ( n e. _om /\ ph /\ ps /\ p e. n ) <-> ( ( n e. _om /\ ph /\ ps ) /\ p e. n ) ) |
| 7 |
1 2
|
bnj517 |
|- ( ( n e. _om /\ ph /\ ps ) -> A. p e. n ( f ` p ) C_ A ) |
| 8 |
7
|
r19.21bi |
|- ( ( ( n e. _om /\ ph /\ ps ) /\ p e. n ) -> ( f ` p ) C_ A ) |
| 9 |
6 8
|
sylbi |
|- ( ( n e. _om /\ ph /\ ps /\ p e. n ) -> ( f ` p ) C_ A ) |
| 10 |
5 9
|
sylbi |
|- ( ta -> ( f ` p ) C_ A ) |
| 11 |
|
ssel |
|- ( ( f ` p ) C_ A -> ( y e. ( f ` p ) -> y e. A ) ) |
| 12 |
|
bnj93 |
|- ( ( R _FrSe A /\ y e. A ) -> _pred ( y , A , R ) e. _V ) |
| 13 |
12
|
ex |
|- ( R _FrSe A -> ( y e. A -> _pred ( y , A , R ) e. _V ) ) |
| 14 |
11 13
|
sylan9r |
|- ( ( R _FrSe A /\ ( f ` p ) C_ A ) -> ( y e. ( f ` p ) -> _pred ( y , A , R ) e. _V ) ) |
| 15 |
14
|
ralrimiv |
|- ( ( R _FrSe A /\ ( f ` p ) C_ A ) -> A. y e. ( f ` p ) _pred ( y , A , R ) e. _V ) |
| 16 |
10 15
|
sylan2 |
|- ( ( R _FrSe A /\ ta ) -> A. y e. ( f ` p ) _pred ( y , A , R ) e. _V ) |