| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj526.1 |
|- ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) ) |
| 2 |
|
bnj526.2 |
|- ( ph" <-> [. G / f ]. ph ) |
| 3 |
|
bnj526.3 |
|- G e. _V |
| 4 |
1
|
sbcbii |
|- ( [. G / f ]. ph <-> [. G / f ]. ( f ` (/) ) = _pred ( X , A , R ) ) |
| 5 |
|
fveq1 |
|- ( f = G -> ( f ` (/) ) = ( G ` (/) ) ) |
| 6 |
5
|
eqeq1d |
|- ( f = G -> ( ( f ` (/) ) = _pred ( X , A , R ) <-> ( G ` (/) ) = _pred ( X , A , R ) ) ) |
| 7 |
3 6
|
sbcie |
|- ( [. G / f ]. ( f ` (/) ) = _pred ( X , A , R ) <-> ( G ` (/) ) = _pred ( X , A , R ) ) |
| 8 |
2 4 7
|
3bitri |
|- ( ph" <-> ( G ` (/) ) = _pred ( X , A , R ) ) |