Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bnj534.1 | |- ( ch -> ( E. x ph /\ ps ) ) |
|
| Assertion | bnj534 | |- ( ch -> E. x ( ph /\ ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj534.1 | |- ( ch -> ( E. x ph /\ ps ) ) |
|
| 2 | 19.41v | |- ( E. x ( ph /\ ps ) <-> ( E. x ph /\ ps ) ) |
|
| 3 | 1 2 | sylibr | |- ( ch -> E. x ( ph /\ ps ) ) |