| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bnj907.1 |  |-  ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) ) | 
						
							| 2 |  | bnj907.2 |  |-  ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) | 
						
							| 3 |  | bnj907.3 |  |-  ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) ) | 
						
							| 4 |  | bnj907.4 |  |-  ( th <-> ( R _FrSe A /\ X e. A /\ y e. _trCl ( X , A , R ) /\ z e. _pred ( y , A , R ) ) ) | 
						
							| 5 |  | bnj907.5 |  |-  ( ta <-> ( m e. _om /\ n = suc m /\ p = suc n ) ) | 
						
							| 6 |  | bnj907.6 |  |-  ( et <-> ( i e. n /\ y e. ( f ` i ) ) ) | 
						
							| 7 |  | bnj907.7 |  |-  ( ph' <-> [. p / n ]. ph ) | 
						
							| 8 |  | bnj907.8 |  |-  ( ps' <-> [. p / n ]. ps ) | 
						
							| 9 |  | bnj907.9 |  |-  ( ch' <-> [. p / n ]. ch ) | 
						
							| 10 |  | bnj907.10 |  |-  ( ph" <-> [. G / f ]. ph' ) | 
						
							| 11 |  | bnj907.11 |  |-  ( ps" <-> [. G / f ]. ps' ) | 
						
							| 12 |  | bnj907.12 |  |-  ( ch" <-> [. G / f ]. ch' ) | 
						
							| 13 |  | bnj907.13 |  |-  D = ( _om \ { (/) } ) | 
						
							| 14 |  | bnj907.14 |  |-  B = { f | E. n e. D ( f Fn n /\ ph /\ ps ) } | 
						
							| 15 |  | bnj907.15 |  |-  C = U_ y e. ( f ` m ) _pred ( y , A , R ) | 
						
							| 16 |  | bnj907.16 |  |-  G = ( f u. { <. n , C >. } ) | 
						
							| 17 | 1 2 3 4 5 6 13 14 | bnj1021 |  |-  E. f E. n E. i E. m ( th -> ( th /\ ch /\ et /\ E. p ta ) ) | 
						
							| 18 |  | vex |  |-  p e. _V | 
						
							| 19 | 3 7 8 9 18 | bnj919 |  |-  ( ch' <-> ( p e. D /\ f Fn p /\ ph' /\ ps' ) ) | 
						
							| 20 | 16 | bnj918 |  |-  G e. _V | 
						
							| 21 | 19 10 11 12 20 | bnj976 |  |-  ( ch" <-> ( p e. D /\ G Fn p /\ ph" /\ ps" ) ) | 
						
							| 22 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 21 | bnj1020 |  |-  ( ( th /\ ch /\ et /\ E. p ta ) -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) | 
						
							| 23 | 22 | ax-gen |  |-  A. m ( ( th /\ ch /\ et /\ E. p ta ) -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) | 
						
							| 24 |  | 19.29r |  |-  ( ( E. m ( th -> ( th /\ ch /\ et /\ E. p ta ) ) /\ A. m ( ( th /\ ch /\ et /\ E. p ta ) -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) ) -> E. m ( ( th -> ( th /\ ch /\ et /\ E. p ta ) ) /\ ( ( th /\ ch /\ et /\ E. p ta ) -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) ) ) | 
						
							| 25 |  | pm3.33 |  |-  ( ( ( th -> ( th /\ ch /\ et /\ E. p ta ) ) /\ ( ( th /\ ch /\ et /\ E. p ta ) -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) ) -> ( th -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) ) | 
						
							| 26 | 24 25 | bnj593 |  |-  ( ( E. m ( th -> ( th /\ ch /\ et /\ E. p ta ) ) /\ A. m ( ( th /\ ch /\ et /\ E. p ta ) -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) ) -> E. m ( th -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) ) | 
						
							| 27 | 23 26 | mpan2 |  |-  ( E. m ( th -> ( th /\ ch /\ et /\ E. p ta ) ) -> E. m ( th -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) ) | 
						
							| 28 | 27 | 2eximi |  |-  ( E. n E. i E. m ( th -> ( th /\ ch /\ et /\ E. p ta ) ) -> E. n E. i E. m ( th -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) ) | 
						
							| 29 | 17 28 | bnj101 |  |-  E. f E. n E. i E. m ( th -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) | 
						
							| 30 |  | 19.9v |  |-  ( E. f E. n E. i E. m ( th -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) <-> E. n E. i E. m ( th -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) ) | 
						
							| 31 | 29 30 | mpbi |  |-  E. n E. i E. m ( th -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) | 
						
							| 32 |  | 19.9v |  |-  ( E. n E. i E. m ( th -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) <-> E. i E. m ( th -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) ) | 
						
							| 33 | 31 32 | mpbi |  |-  E. i E. m ( th -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) | 
						
							| 34 |  | 19.9v |  |-  ( E. i E. m ( th -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) <-> E. m ( th -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) ) | 
						
							| 35 | 33 34 | mpbi |  |-  E. m ( th -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) | 
						
							| 36 |  | 19.9v |  |-  ( E. m ( th -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) <-> ( th -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) ) | 
						
							| 37 | 35 36 | mpbi |  |-  ( th -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) | 
						
							| 38 | 4 | bnj1254 |  |-  ( th -> z e. _pred ( y , A , R ) ) | 
						
							| 39 | 37 38 | sseldd |  |-  ( th -> z e. _trCl ( X , A , R ) ) | 
						
							| 40 | 4 39 | bnj978 |  |-  ( ( R _FrSe A /\ X e. A ) -> _TrFo ( _trCl ( X , A , R ) , A , R ) ) |