| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj938.1 |
|- D = ( _om \ { (/) } ) |
| 2 |
|
bnj938.2 |
|- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) |
| 3 |
|
bnj938.3 |
|- ( si <-> ( m e. D /\ n = suc m /\ p e. m ) ) |
| 4 |
|
bnj938.4 |
|- ( ph' <-> ( f ` (/) ) = _pred ( X , A , R ) ) |
| 5 |
|
bnj938.5 |
|- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
| 6 |
|
elisset |
|- ( X e. A -> E. x x = X ) |
| 7 |
6
|
bnj706 |
|- ( ( R _FrSe A /\ X e. A /\ ta /\ si ) -> E. x x = X ) |
| 8 |
|
bnj291 |
|- ( ( R _FrSe A /\ X e. A /\ ta /\ si ) <-> ( ( R _FrSe A /\ ta /\ si ) /\ X e. A ) ) |
| 9 |
8
|
simplbi |
|- ( ( R _FrSe A /\ X e. A /\ ta /\ si ) -> ( R _FrSe A /\ ta /\ si ) ) |
| 10 |
|
bnj602 |
|- ( x = X -> _pred ( x , A , R ) = _pred ( X , A , R ) ) |
| 11 |
10
|
eqeq2d |
|- ( x = X -> ( ( f ` (/) ) = _pred ( x , A , R ) <-> ( f ` (/) ) = _pred ( X , A , R ) ) ) |
| 12 |
11 4
|
bitr4di |
|- ( x = X -> ( ( f ` (/) ) = _pred ( x , A , R ) <-> ph' ) ) |
| 13 |
12
|
3anbi2d |
|- ( x = X -> ( ( f Fn m /\ ( f ` (/) ) = _pred ( x , A , R ) /\ ps' ) <-> ( f Fn m /\ ph' /\ ps' ) ) ) |
| 14 |
13 2
|
bitr4di |
|- ( x = X -> ( ( f Fn m /\ ( f ` (/) ) = _pred ( x , A , R ) /\ ps' ) <-> ta ) ) |
| 15 |
14
|
3anbi2d |
|- ( x = X -> ( ( R _FrSe A /\ ( f Fn m /\ ( f ` (/) ) = _pred ( x , A , R ) /\ ps' ) /\ si ) <-> ( R _FrSe A /\ ta /\ si ) ) ) |
| 16 |
9 15
|
imbitrrid |
|- ( x = X -> ( ( R _FrSe A /\ X e. A /\ ta /\ si ) -> ( R _FrSe A /\ ( f Fn m /\ ( f ` (/) ) = _pred ( x , A , R ) /\ ps' ) /\ si ) ) ) |
| 17 |
|
biid |
|- ( ( f Fn m /\ ( f ` (/) ) = _pred ( x , A , R ) /\ ps' ) <-> ( f Fn m /\ ( f ` (/) ) = _pred ( x , A , R ) /\ ps' ) ) |
| 18 |
|
biid |
|- ( ( f ` (/) ) = _pred ( x , A , R ) <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
| 19 |
1 17 3 18 5
|
bnj546 |
|- ( ( R _FrSe A /\ ( f Fn m /\ ( f ` (/) ) = _pred ( x , A , R ) /\ ps' ) /\ si ) -> U_ y e. ( f ` p ) _pred ( y , A , R ) e. _V ) |
| 20 |
16 19
|
syl6 |
|- ( x = X -> ( ( R _FrSe A /\ X e. A /\ ta /\ si ) -> U_ y e. ( f ` p ) _pred ( y , A , R ) e. _V ) ) |
| 21 |
20
|
exlimiv |
|- ( E. x x = X -> ( ( R _FrSe A /\ X e. A /\ ta /\ si ) -> U_ y e. ( f ` p ) _pred ( y , A , R ) e. _V ) ) |
| 22 |
7 21
|
mpcom |
|- ( ( R _FrSe A /\ X e. A /\ ta /\ si ) -> U_ y e. ( f ` p ) _pred ( y , A , R ) e. _V ) |