| Step |
Hyp |
Ref |
Expression |
| 1 |
|
domprobmeas |
|- ( P e. Prob -> P e. ( measures ` dom P ) ) |
| 2 |
1
|
adantr |
|- ( ( P e. Prob /\ A : NN --> dom P ) -> P e. ( measures ` dom P ) ) |
| 3 |
|
domprobsiga |
|- ( P e. Prob -> dom P e. U. ran sigAlgebra ) |
| 4 |
|
simpr |
|- ( ( P e. Prob /\ A : NN --> dom P ) -> A : NN --> dom P ) |
| 5 |
4
|
ffvelcdmda |
|- ( ( ( P e. Prob /\ A : NN --> dom P ) /\ n e. NN ) -> ( A ` n ) e. dom P ) |
| 6 |
5
|
ralrimiva |
|- ( ( P e. Prob /\ A : NN --> dom P ) -> A. n e. NN ( A ` n ) e. dom P ) |
| 7 |
|
sigaclcu2 |
|- ( ( dom P e. U. ran sigAlgebra /\ A. n e. NN ( A ` n ) e. dom P ) -> U_ n e. NN ( A ` n ) e. dom P ) |
| 8 |
3 6 7
|
syl2an2r |
|- ( ( P e. Prob /\ A : NN --> dom P ) -> U_ n e. NN ( A ` n ) e. dom P ) |
| 9 |
|
ssidd |
|- ( ( P e. Prob /\ A : NN --> dom P ) -> U_ n e. NN ( A ` n ) C_ U_ n e. NN ( A ` n ) ) |
| 10 |
2 8 5 9
|
measiun |
|- ( ( P e. Prob /\ A : NN --> dom P ) -> ( P ` U_ n e. NN ( A ` n ) ) <_ sum* n e. NN ( P ` ( A ` n ) ) ) |