| Step |
Hyp |
Ref |
Expression |
| 1 |
|
domprobmeas |
⊢ ( 𝑃 ∈ Prob → 𝑃 ∈ ( measures ‘ dom 𝑃 ) ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 : ℕ ⟶ dom 𝑃 ) → 𝑃 ∈ ( measures ‘ dom 𝑃 ) ) |
| 3 |
|
domprobsiga |
⊢ ( 𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra ) |
| 4 |
|
simpr |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 : ℕ ⟶ dom 𝑃 ) → 𝐴 : ℕ ⟶ dom 𝑃 ) |
| 5 |
4
|
ffvelcdmda |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 : ℕ ⟶ dom 𝑃 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ 𝑛 ) ∈ dom 𝑃 ) |
| 6 |
5
|
ralrimiva |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 : ℕ ⟶ dom 𝑃 ) → ∀ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ∈ dom 𝑃 ) |
| 7 |
|
sigaclcu2 |
⊢ ( ( dom 𝑃 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ∈ dom 𝑃 ) → ∪ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ∈ dom 𝑃 ) |
| 8 |
3 6 7
|
syl2an2r |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 : ℕ ⟶ dom 𝑃 ) → ∪ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ∈ dom 𝑃 ) |
| 9 |
|
ssidd |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 : ℕ ⟶ dom 𝑃 ) → ∪ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ⊆ ∪ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ) |
| 10 |
2 8 5 9
|
measiun |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 : ℕ ⟶ dom 𝑃 ) → ( 𝑃 ‘ ∪ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ) ≤ Σ* 𝑛 ∈ ℕ ( 𝑃 ‘ ( 𝐴 ‘ 𝑛 ) ) ) |