Step |
Hyp |
Ref |
Expression |
1 |
|
df-cad |
|- ( cadd ( ph , ps , ch ) <-> ( ( ph /\ ps ) \/ ( ch /\ ( ph \/_ ps ) ) ) ) |
2 |
|
idd |
|- ( -. ch -> ( ( ph /\ ps ) -> ( ph /\ ps ) ) ) |
3 |
|
pm2.21 |
|- ( -. ch -> ( ch -> ( ph /\ ps ) ) ) |
4 |
3
|
adantrd |
|- ( -. ch -> ( ( ch /\ ( ph \/_ ps ) ) -> ( ph /\ ps ) ) ) |
5 |
2 4
|
jaod |
|- ( -. ch -> ( ( ( ph /\ ps ) \/ ( ch /\ ( ph \/_ ps ) ) ) -> ( ph /\ ps ) ) ) |
6 |
1 5
|
syl5bi |
|- ( -. ch -> ( cadd ( ph , ps , ch ) -> ( ph /\ ps ) ) ) |
7 |
|
cad11 |
|- ( ( ph /\ ps ) -> cadd ( ph , ps , ch ) ) |
8 |
6 7
|
impbid1 |
|- ( -. ch -> ( cadd ( ph , ps , ch ) <-> ( ph /\ ps ) ) ) |