Metamath Proof Explorer


Theorem cad0

Description: If one input is false, then the adder carry is true exactly when both of the other two inputs are true. (Contributed by Mario Carneiro, 8-Sep-2016) (Proof shortened by Wolf Lammen, 21-Sep-2024)

Ref Expression
Assertion cad0 ¬χcaddφψχφψ

Proof

Step Hyp Ref Expression
1 df-cad caddφψχφψχφψ
2 idd ¬χφψφψ
3 pm2.21 ¬χχφψ
4 3 adantrd ¬χχφψφψ
5 2 4 jaod ¬χφψχφψφψ
6 1 5 biimtrid ¬χcaddφψχφψ
7 cad11 φψcaddφψχ
8 6 7 impbid1 ¬χcaddφψχφψ