Metamath Proof Explorer


Theorem cad0

Description: If one input is false, then the adder carry is true exactly when both of the other two inputs are true. (Contributed by Mario Carneiro, 8-Sep-2016) (Proof shortened by Wolf Lammen, 21-Sep-2024)

Ref Expression
Assertion cad0 ¬ χ cadd φ ψ χ φ ψ

Proof

Step Hyp Ref Expression
1 df-cad cadd φ ψ χ φ ψ χ φ ψ
2 idd ¬ χ φ ψ φ ψ
3 pm2.21 ¬ χ χ φ ψ
4 3 adantrd ¬ χ χ φ ψ φ ψ
5 2 4 jaod ¬ χ φ ψ χ φ ψ φ ψ
6 1 5 syl5bi ¬ χ cadd φ ψ χ φ ψ
7 cad11 φ ψ cadd φ ψ χ
8 6 7 impbid1 ¬ χ cadd φ ψ χ φ ψ