Metamath Proof Explorer


Theorem cadbi123d

Description: Equality theorem for the adder carry. (Contributed by Mario Carneiro, 4-Sep-2016)

Ref Expression
Hypotheses cadbid.1
|- ( ph -> ( ps <-> ch ) )
cadbid.2
|- ( ph -> ( th <-> ta ) )
cadbid.3
|- ( ph -> ( et <-> ze ) )
Assertion cadbi123d
|- ( ph -> ( cadd ( ps , th , et ) <-> cadd ( ch , ta , ze ) ) )

Proof

Step Hyp Ref Expression
1 cadbid.1
 |-  ( ph -> ( ps <-> ch ) )
2 cadbid.2
 |-  ( ph -> ( th <-> ta ) )
3 cadbid.3
 |-  ( ph -> ( et <-> ze ) )
4 1 2 anbi12d
 |-  ( ph -> ( ( ps /\ th ) <-> ( ch /\ ta ) ) )
5 1 2 xorbi12d
 |-  ( ph -> ( ( ps \/_ th ) <-> ( ch \/_ ta ) ) )
6 3 5 anbi12d
 |-  ( ph -> ( ( et /\ ( ps \/_ th ) ) <-> ( ze /\ ( ch \/_ ta ) ) ) )
7 4 6 orbi12d
 |-  ( ph -> ( ( ( ps /\ th ) \/ ( et /\ ( ps \/_ th ) ) ) <-> ( ( ch /\ ta ) \/ ( ze /\ ( ch \/_ ta ) ) ) ) )
8 df-cad
 |-  ( cadd ( ps , th , et ) <-> ( ( ps /\ th ) \/ ( et /\ ( ps \/_ th ) ) ) )
9 df-cad
 |-  ( cadd ( ch , ta , ze ) <-> ( ( ch /\ ta ) \/ ( ze /\ ( ch \/_ ta ) ) ) )
10 7 8 9 3bitr4g
 |-  ( ph -> ( cadd ( ps , th , et ) <-> cadd ( ch , ta , ze ) ) )